Part I: Information Geometry

Color code
Definition
Theorem

Key Problem

1. The Center Piece of Information Theory

Definition: K-L Divergence (Kullback-Liebler)
For P, () both probability distributions on the same finite alphabet X

D(P||Q) £ ) P log Pla)

reX )

« Entropy and mutual information are both special cases

H(x) = H(P,) = H(U) — D(P,||U)
I(x;y) = D(Py||P.P,)
« Information inequality
D(P||Q) >0,  equalityiff P=Q
« Convexity
D(P||Q) is convex in (P, Q)

o Continuity

Why K-L divergence matters?

Notation:

e Empirical distribution
P, (a;27) = % Z?:l L(zi==a)

e Type class:
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Ty 2 {a € X" : B(27) = Q()}
» Empirical Average
i g(@) = By, (5am) [9(¥)]

Sanov's Theorem
1. Probability of type class
Pociiap (XF € Tg)=e "PEIF)
2. One type dominates: E is a subset of distributions on X,
Pewiiap (X{ € Uger Ty ) = e D@IIP)
where Q* = argmingcg D(Q||P)
Quick review of the Channel Coding Theorem
« Transmit a codeword 7, receive yf',
(27, y7) jointly typical w.r.t. P
« Have some other "incorrect" codewords: Z7[j|, 7 =1,...,M
cachj:  (#[j],4}) ~ PPy

e It's unlikely for an incorrect codeword to appear typical with the received

_n'D(PXyHPxPy) e—n-I(x;y)

Py ap)~p.p, (E1,97) € Tp,, ) = €
« With M = e"% incorrect codewords, R < I(x;y), the union bound of the
above is still small.
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Similar stories in rate distortion, error exponents,

2. Distance and Projection
o K-L divergence is a measure of distance between distributions
e There are many other ways to define divergence

eg. f(+) convex, continuous, and f(1) =0

D/(PQ) = ¥, Q) £ (52)

i-Projection, the binary hypothesis
testing story

Consider Xi,...,X, i.i.d. distributed from either F,
or Pl.

e Log-likelihood ratio test

n Zizl 08 B, (i) I? v
0 General Decision Region

o The statistic is an empirical average Py

o B =B osBi0]

e The decision region is a subset of type classes
E=2{Q:E,q [log %(X)} >~}

Linear Decisio
~ Region
H : n __ n Py
claim Hy iff X} = a7 € | IQeE ©c . -
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e Probability of Error

]P)(H() — ﬁl)

P|xe | To|Ho | = e mminacs PQIR)
QcE

P(Hl — HO) =P qul € U TQ H, | = e_TL'l’ninQEEc D(Q||f;]§?2{f;,fi§§gion
om- | ) T

o

e The optimization problem

*—=ar min D P,
@ S QEQIF (> (QllF)

o Dominating error event Q{"Hlﬁ

« testing statistic f(x) = log P, (x)/ Py (x)

Definition: Exponential Family (1-D)

EPy,f) 2 {P,te[0,1]: P(x) = Py(z) - et/ @721) 'y}

o PF,: a starting point
o f(-): natural statistic (meaning later)
o «a(t): normalization factor
ec(t) — >, B(z)- et f(@) — Ey-p, [et-f(X)]
also called the log-moment generation function.

« viewed as "exponential tilting" on Py according to f(-).

o Empirical average
1(t) = Exep, [f(x)]

e A number of nice properties
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Z D(B|\By) = §n(t) = var,_p [f()] =
o 7)(t) monotonically increase with ¢

« Connection between Fisher information Z; and K-L divergence

Definition: Linear Family

L(f,7) £{Q : Exwqlf(x)] =}

Linear Decision
Region

Theorem: Pythagorean

vQ € L(f,7):
D(Q[|P) = D(Q||Q") + D(Q*|| o)
where Q* € L(f,y) N E(R, f)

« Unique intersection since 7(t) £ Ex-p, [f(x)] monotonic increase with ¢.

Q* = P. € £, withE,_p. [f(X)] = ¥:
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D(Q||Q") = Exwq _10g %] = Exq llog zg*(?x))}
' Q(x) ]

— EXNQ log PO (X) . et*.f(x)—a(t*)

= Exq |log Bx)| @[t f(x) — " (t)] c
~Eeq |log ook | - Beglt' £ - @' (0)

| Py(x) - et fx)—a’(t)
R0 B ["g Py(x)
— D(Q||R) - D(Q°||P)

Corollary: Typical Error Event Occurs on Exponential Family

*=ar min D P,
O =arg min  DEIR)

has Q* € E(Ry, f), with f(x) = log (i;((;:))) and E,.o:[f(x)] = 7.

Definition: Q* is called the i-projection of P, to the linear family L(f,~).

Takeaway message:

» Hypothesis testing is about operations on the empirical distribution, in
functional space;

« Each problem has a pair Py, P;, and the exponential family associated;

e Projection of the observed empirical distribution to the exponential family.

m-Projection: the Learning Story

Suppose we observe some data samples x7 with empirical distribution 15(-; z7).
We know that the true model belongs to a parameterized family

P £ {P(;0);0 € R}

often chosen as an exponential family.

Maximum Likelihood estimate of the unknown parameter 6.
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A~ A

O (z7) = arg max, % S log P(z;;6)

« Usually assume the family to be smooth, % P(z, ) exist, finite
o Can have higher dimensional parameters
o Why do maximum likelihood estimate?

 Distribution matching

A

1 )
arg max — log P(z;;0) = argmax E__ 5 ..« [logP X;H}
3l o) = g B, o P

= arg Inéin EXNP(.;;,;?)
— argmin D (P(327)|[P(+0))
0

Definition: P(-; éML) is called the m-projection of P to the model family P.

Corollary: if P is an exponential family, P = £(F,, f), and suppose
B, p[f(x)] =7, then
P(50u.) € P N L(f,7)

L
Linear Decision
Region
P,
E Lo -»
PD.;: N : : :- Q
(]
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Takeaway message:
o A model family is a manifold/plane in the space of distributions;

» Learning is also a projection, from the observed empirical distribution to
the model family.

3. The Geometry of Information Theory and Learning

e A number of information theory results presented as geometric stories:

o Rate Distortion, "Rate-distortion theory: A mathematical basis for data
compression, Englewood Cliffs, NJ: Prentice-Hall, 1971."

e Error Exponent

e Csiszar's book

now publishers - Information Theory and Statistics: A Tutorial | pupltion
; ATistoriad
Publication Date: 15 Dec 2004 Download extract Abstract This ; e

tutorial is concerned with applications of information theory |
concepts in statistics, in the finite alphabet setting. The information

. https://www.nowpublishers.com/article/Details/CIT-004

o« What is difficult about this?

e The geometry is complex.

Shun'ichi Amari - Wikipedia
Shun'ichi Amari, is a Japanese scholar born in 1936 in

Tokyo, Japan. He majored in Mathematical Engineering
in 1958 from the University of Tokyo then graduated in

W https://en.wikipedia.org/wiki/Shun%27ichi_Amari

e Fisher information

%D(B&HPO) = %n(t) = vary.p, [f(x)] = Z;
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but Z; > 0 can be an arbitrary function of ¢.

So D(F,||Ry) is a convex function of ¢, but not clear how convex.

If you have learned Cramer-Rao bound ...

e What we need is a lot more.

Broadcast channels: P,,, P,,. Evenif I(x;y) > I(x;z), doesn't mean
the channel x — z is degraded.

Dependence is not a single dimensional concept.

Mismatched detection, universal detection: what happens if we didn't use

the right f(z) = log 113(1) Eg

How bad are imperfect statistic models?

to make decision, but used a different f'(-) ?

Increasing the dimensionality of £, what collection/sequence of statistics
k
P, (z;0) = Po(z) - exp Zei - fi(@) — a(8)
i=1

What statistic is more valuable in learning?
What happens with each iteration and each mini-batch of samples?
Evolution and convergence of learned models in functional space.

From input/output neural networks to Transfer Learning, Multi-Modal
Learning

Network information theory and more complex learning tasks.
There are often too many distributions to worry about

e The ground truth

e The parameterized family

e The empiricals

e The current model and the updates

e Restrictions, side information, loss

e Tuning of design parameters
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e Basically: we cannot write it very clean for 1-D problems with 2 distributions,
but we need some analysis for multi-dimensional problems with many
distributions.

What is Geometry and Why Geometry?

o Distance — inner product, projection, basis, coordinates (Hilbert Space for
distributions)

o Space of functions and Space of distributions.

Part I: Information Geometry

10



Part ll: The Local Geometry

Notation

True model P, Observed empirical distribution 15, Estimated model P.
Color code

Definition

Theorem

Key Problem

4. Fisher Information Metric
Definition: Fisher Information

For a parameterized family of distributions P = {P,(-;8),8 € R¥}, the Fisher information matrix
Z(9) € R¥**k s

0
[I(Q)]l] = IEXNPX (:8) {(agi

log P Q)) (% log P Q))]

e Can be shown to be Positive Semi-Definite

e Can be shown to be a valid metric

» Has a lot of good applications

Understand the Definition
» Every distribution involved is close to P(-;6)
» Reference distribution:
R, £ P (50 =0)
« Think of all entries in @ are restricted to be within (—e¢, +¢)

o Each 6; corresponds to a curve

6=10,...,0,6;,0,...,00 — P(z;0)2R(z)-1+6;-fi(z)),zcX
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» Log likelihood ratio

log P, (x;0) — log P(z;0) = log(1 +6; - fi(z)) = 6; - fi(z) + O(¢?), Vz € X
N———
Rx(w)
e Perturbation accumulates
0 =1[01,...,60) — Pua;0) = R(z)- (1+3,0;fi(z) +O(?)), z € X

« Locally viewed as exponential family with natural statistic f;(-).

» Fisher information:
[Z(0 = 0))ij = Exwr, [fi()fi ()], Vi,j
o obviously positive semi-definite
e obviously a valid inner product:
(fis I5) = Banr, [fi () £ (X)]
e has to stay on the simplex:
Ewwr, [fi(X)] =0, Vi

» Wait! now we are talking about both distributions and functions.
For given two distributions P, P, € N (Ry) , define fi, f by
P(z) = By(z) - (1 + fi(z)), i=1,2
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5. Information Vector

Definition:
« Fix a finite alphabet: X,

o Fix a reference distribution: Ron X,

1. For any function f : X — R, with E, g [f(z)] =0

The information vector for f is written as ¢(f) € R¥, with

¢¥) £ [VR(z) - f(2), z € X]T

2. For any distribution P € N (R),

The information vector for P is written as ¢() € R¥, with

6P)(2) 2 \/Rz) - (28 B 1) -

1

~ /R(z)

-(P(z) - R(z)), z € X

First Properties:

1. Inner product and Covariance:

(@), ¢\12)) = B g [ 1 (%) f2 (%))

2. Norm and variance:
[¢9[|> = var, g [f(x)]

3. Orthogonal functions iff uncorrelated (w.r.t. R)

K-L Divergence
For P,Q € N.(R),
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D(PIIQ) = 5167 — 69| +o(e?)
D(@QIIP) = 16"~ 9| + ofe)

Proof:
This is our first local geometric result, let's start with notations.

Write

(P) (g
fo Po ¢ P)=R() (1+ f(z)) = Rz)- (1 + %ﬁgg;) = R(z) + VR(z) - ¢'")(x)

@) (g
94 Q& ¢9: Q) = R)- (1+g(z)) = Rla)- (1 ¢ ZED — R@) + VE®) - 69 ()

Now we have

D(P||Q) = ZP x; =Y _P(x): (m% ~log %)
_ ZP -[log (1 + f(z)) — log (1 + g(z))]

= Y IR(@) + Bz) - f(z)) V(w) - @)~ (o) + 26 @) + O() ‘
O(e) O(e) O(e2) O(e) O(e2)

CLT and Asymptotic Normality

Recall Large Deviations / Sanov Theorem

Pyiiap (X} € Ty ) =e "P@IP)
— e 389D Pro(e)
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e The empirical distribution PX(-;X?) = (Q is random, corresponding ¢(Q) is also random

 Gaussian distributed around the ensemble distribution P <> qb(P)

o With approximate a Gaussian distribution, white, with variance 1/n per dimension.

Local parameter estimate: empirical average o estimate Gy,

o CLT:if f(x) has zero-mean and unit variance w.r.t. R, L3 f(x) — N(0,1)

Jn

o Asymptotic efficiency of ML estimate:

vn - (G —60) — N(Oaﬁ)

« The business between a finite alphabet and a continuous alphabet.

6. Example: Akaike Information Criterion

Akaike information criterion - Wikipedia

The Akaike information criterion ( AIC) is an estimator of
prediction error and thereby relative quality of statistical
models for a given set of data. Given a collection of models

W https://en.wikipedia.org/wiki/Akaike_information_criterion

« Consider a sequence of nested parameterized families P; C Py C ...
« with increasing dimensionality of parameters

Pr={B(;0%), 0* cR*}, k=1,....m
» Observe x} = z7, solve for each family

Bljy, = arg min D(P(5x})||P)

PePy,
« Larger k, better matching,

« Which k to choose? How to penalize bigger families? Avoid over-fitting.

Akaike's observation:

We really want to minimize
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D(P||P)
but observe D(P||P).

Locally:

1. All ML estimates are just projections

b2 R ﬂ'k(qu) P

2. What to compare?
I72() — @l < [Imi(¢) — &l
but how about

lm2() = ol 2 |Im1(9) — ¢l

3. 923 — ¢ is asymptotically normal with
variance 1/n per dimension.

Given || — i (#)||?, need to
« subtract the average power of (¢ — ¢) L P, ~ L(x|-k)
« add the average power of (¢ — @) || P, ~ ik

ko |X|—k

i - 2.2 in D(P||PF =
mkm | — mi(P)||” + " " — rr%n (P||Pyy,) + o

7. Projections and Inner Products

What does the direction of information vectors represent?

o Consider Xq,...,X, ~iid. R,
» but we observe empirical distribution p

7 — P@)-R(z)
¢($) - R(w) 9 vx

» We would like to evaluate the empirical average of a function f : X — R

o wlo.g.assume E, g[f(x)]=0

« Information vector ¢ <> f, with ¢p(z) = \/R(z) - f(z), Vz
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The empirical average

% D f@i) = Beplf)] = > P(@)- f(a)
=y (R(w) +VR(z)- é(w)) '

=

&
NI«
T
S

L fe
= ($,9) R

Back to Binary Hypothesis Testing
» Recall linear decision region

n H Linear Decisio
% Yo log f(zi) = E,_p[f(x)] 2 Y Region
Hy

and the optimal Py

f(@) =log i), Ve

e A binary query corresponds to a vector

= ¢(P1) _ ¢(Pz)
(Pi(z) — R(z)) — (Py(x) — R(z))

)
Ve (7 1) - (7 )
VR@)- Jos (53 ) -ox (55|
VR(@)- f(z) = ¢/

for the log-likelihood function

& =3
8

Q

e LLR = project observed empirical distribution g{&on P

« length = D(P;||P,), maximum one-sided error
exponent e

« What if we use a different statistic f’ a log % ?
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P £ arg D(Q||Ry)

min
Q:Eq[f']=Ep, [f']

Maximum one-sided error exponent reduced by factor of

‘COS ( LD, ¢ )) ‘2

« Measures how much is f’(x) useful in answering a
question about f !!!

8. Information Vector for Joint Distributions, CDM

« P, with reference R,,

e Choose R,, = P - P,, independent with the same marginals

Definition: Canonical Dependence Matrix (CDM) B € R¥*Y
P, (z,y) — P (x)P,
B(a,y) & B p) - BRb) (z,y) €X' x Y
Px (x)Py (y)

¢ Inherited property
3| BII? ~ D(By||BB,) = I(xy)

» X,y have symmetric positions
o Describes how the two random variables are dependent

e Can be viewed as a channel
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Qi @

« W = P, defines a channel
« By definition, if input is R, = P, the outputis R, = P,

« If we change input to be Qx T gb e R*

Qx( = +\/ ¢ re X

The output would be Qy e RY,

E y|x y|$

— Y Ru(yla) - Rulo) (1 L 4@ )
y)+ Zny(a:,y) . ()

y)+ > (Py(x,y) — B(z)R,(y)) -

T

B(z,y)

Theorem: B- matrix as a map

v=53

Map of functions
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Suppose

pe f: VR(z) fz) =(z), ze€X
g A/ R(y)-9) =), yed

Define 1 = B - ¢, what function operation is this?

g9(y) = «/) (Z B(z,y) - ¢(w)>

( fy(m . W))

Py ( y ) ¢(z)
- BG) VAW
Fly =4, Yy
Similarly f(z) = E[g(y)|x = z], Vz

B matrix is the conditional expectation operator.
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Part lll: Machine Learning

9. Example: Conjugator Prior Family

Definition: Given an observation model F)|,, a parameterized family of prior
distribution

P ={P:(0),0 € R} is called the conjugate prior family if for any value of y,
By (-ly) € P.
o Update knowledge turned into update parameters

» Bernoulli/Beta; Categorical/ Dirichlet, Poisson/Gamma, Normal (fix 02)/ Normal

Diaconis, Ylvisker (1979)

Conjugate Priors for Exponential Families

Let $X$ be a random vector distributed according to an exponential
family with natural parameter $\theta \in \Theta$. We characterize
conjugate prior measures on $\Theta$ through the property of

https://projecteuclid.org/journals/annals-of-statistics/volume-7/i
ssue-2/Conjugate-Priors-for-Exponential-Families/10.1214/a0s/1176
344611.full

If the observation model is an exponential family

Pulule) = exp(@ - £y) — o(2))
then the conjugate prior P (-; #) must satisfy that for all §, evaluated w.r.t. P(+;6) -
Py|x:

E[E[t(y)|x]ly] = a - t(y) + b, for some constants a, b.

The geometric view:
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1. Observe a sequence ¥, . . ., Y, With ~ W e
empirical distribution B, = Q, <> ¢

2. Symmetric story, the posterior
Px|y?(|g?) = Qx s Q - BT ﬁ
3. Conjugate prior: regardless of ¢, the

posterior is always in a 1-D family : ?
remains in the same direction.

Bis arank-1matrixx: B=0o - - qu

B-B'-y=0"7¢ <« EE[yKXI]=a-ty)

10. The multi-dimensional nature of dependence
B=> 0y 'QzT
o Dependence over multiple modes
I(x;y) =~ % : Zia?

o Example: broadcast channel,

« I(x;y) > I(x;z) does not mean we cannot transmit a private message X — z
that is not decodable by vy.

e More capable (EI-Gammal 79') : BXy dominates B,, in every mode.

||Bxy '?X||2 > ||sz 'QX”Qa vﬂ(

o Example: Strong DPI
 All singular values of B are less than or equal to 1.
1By -l <lg,l% V¢, < D®BIQy)< DB,
» But the contraction is really not a 1-D scaling issue.

o Literature of slightly different formulations of SDPI.
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o Example: Hermite Polynomial for Additive Gaussian Noise Channel

11. Renyi Correlation, CCA

Definition: Hirschfeld-Gebelein-Renyi Maximal correlation:
Given B,y:

p = max Eyyp, [£(x) - 9(y)]
where f, g satisfies E[f(x)] = E[g(y)] = 0, E[f*(x)] = E[g*(y)] = 1
o Defined as a measure of level of dependence 1959.

« Generalizes to multiple pairs of functions fi,..., fe; 915, 9k-

e Canonical Dependence Analysis, Correspondence Analysis.

12. Operations in Neural Networks
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Lastlayer
A

Softmax output
e

Yy

py|x(y|‘L} = Z

z(y')’
o €

.
2(y) =) filz) - 9i(y) + b(y)
i=1

« Classificationy € {1,...,|Y|}.
o Last layer input: fi(x),..., fi(z),
o Last layer weights: g;(y),i = 1,...,k;y € Y,

e Softmax activation:
exp | S5 (@) 0i(y) + ()]

If)(f \9)
>, exp [Sh, (@) 0:0) + 4

ylx (yle) =

; Y
I

e Cross-Entropy Loss, ML for discriminative model.

arg r?in D(P; - py|><||}5X ) py(li’g))
9

model = Sequential()

model.add(...)

model.add(Dense(yCard, activation='softmax', input_dim=k))
sgd = SGD(4, decay=1l1e-2, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)

* In the local setup

1. Reference
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Rx(x) = Px(w)a Vz
R/(y) x V), vy

exp |5 fila) - 90(v)
>y €XP [Zf_l fi(x) - g:(y')

fg)

Fi” (ylz) = Ry(y) -

y yey
}y

2. Learned model

P — R, BU)

B9 (z,y) = 1/ Ru(2)R,(y) (Zf ) v,y

3. Optimization
arg r?in |B — BY9)|2
g

4. Solution: SVD

Six): The selected feature function Wiyl The output layer weights

5. How was this numerically solved?

BackProp:
o Fix f: g(y) < E[f(x)ly = y], Yy, equivalent to %(g) ~ B. Q(f)
o Fixg: f(z) <+ Elg(y)|x = z], Yz, equivalent to Q(f) « BT -Q(g)
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13. What is this good for?

e [tis good to know that NNs are SVD solvers;

e H-score implementation

H(f,9) =B~ B 2B, 5 [£760- gly)] ~ gtrace (cov(f) - cov(g))
H(f)=H(f,9") = Eyup, [E[fQ)ly = y]" - cov(f) ™" - E[f )l = v]]

X4D Feature y
Space

\
X

f(x)

— H-Score

\
A 9(y)

o —

» Allows aggressive dimension reduction

« Direct operation on the feature functions

« Choice of reference distribution R,, and iterative algorithms, convergence
analysis.

« Knowledge subspace: span(fi, ..., f). Interpretation and evaluation of learning
quality.

e Multi-variate, multi-modal, multi-task problems.
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