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Part I: Information Geometry
Color code

Definition

Theorem

Key Problem 

1. The Center Piece of Information Theory

Definition: K-L Divergence (Kullback-Liebler) 
For  both probability distributions on the same finite alphabet 

Entropy and mutual information are both special cases

Information inequality

Convexity

 is convex in 

Continuity 

Why K-L divergence matters? 
Notation: 

Empirical distribution

Type class: 

P ,Q X

D(P ∣∣Q) ≜ P(x) log
x∈X

∑
Q(x)
P(x)

H(x)

I(x; y)

= H(P ) = H(U) −D(P ∣∣U)x x

= D(P ∣∣P P )xy x y

D(P ∣∣Q) ≥ 0, equality iff  P = Q

D(P ∣∣Q) (P ,Q)

(a;x ) =P̌x 1
n 1n

1 ∑i=1
n

(x ==a)i
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Empirical Average

Sanov's Theorem 

 Probability of type class

 One type dominates:  is a subset of distributions on , 

where  

Quick review of the Channel Coding Theorem

Transmit a codeword , receive , 

 jointly typical w.r.t. 

Have some other "incorrect" codewords: 

each 

It's unlikely for an incorrect codeword to appear typical with the received

With  incorrect codewords, , the union bound of the 
above is still small. 

T ≜Q {x ∈1
n X :n (⋅;x ) =P̌x 1

n Q(⋅)}

g(x ) =n
1 ∑i=1

n
i E [g(x)]x∼ (⋅;x )P̌x 1

n

P ( x ∈x ∼i.i.d.P1
n 1

n T ) ≐Q e−nD(Q∣∣P )

E X

P ( x ∈ ∪ T ) ≐ ex ∼i.i.d.P1
n 1

n
Q∈E Q

−n⋅D(Q ∣∣P )∗

Q =∗ arg min D(Q∣∣P)Q∈E

x1
n y1

n

(x ,y )1
n

1
n Pxy

[j], j =x~1
n 1,…,M

j : ( [j],y ) ∼x~1
n

1
n P Px y

P (( ,y ) ∈( ,y )∼P Px~1
n

1
n

x y
x~1
n

1
n T ) ≐Pxy

e =−n⋅D(P ∣∣P P )xy x y e−n⋅I(x;y)

M = enR R < I(x; y)
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Similar stories in rate distortion, error exponents, 

2. Distance and Projection
KL divergence is a measure of distance between distributions

There are many other ways to define divergence

eg.  convex, continuous, and 

i-Projection, the binary hypothesis 
testing story
Consider   i.i.d. distributed from either  
or  .  

Log-likelihood ratio test

The statistic is an empirical average

The decision region is a subset of type classes

claim  iff 

f(⋅) f(1) = 0

D (P ∣∣Q) =f Q(x) ⋅∑x f (
Q(x)
P (x))

x ,…, x1 n P0
P1

log γ
n
1 ∑i=1

n

P (x )0 i

P (x )1 i

Ĥ0

≷
Ĥ1

log =
n
1 ∑i=1

n

P (x )0 i

P (x )1 i E log (x)x∼ (⋅;x )P̌ 1
n [

P0

P1 ]

E ≜ {Q : E log (x) ≥x∼Q [
P0

P1 ] γ}

Ĥ1 x =1
n x ∈1

n T⋃Q∈E Q
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Probability of Error 

The optimization problem

Dominating error event 

testing statistic 

Definition: Exponential Family 1D

        

: a starting point

: natural statistic (meaning later)

: normalization factor

    

also called the log-moment generation function. 

viewed as "exponential tilting" on  according to . 

Empirical average

A number of nice properties

P(H → )0 Ĥ1

P(H → )1 Ĥ0

= P x ∈ T H ≐ e
⎝

⎛
1
n

Q∈E

⋃ Q

∣

∣

0
⎠

⎞
−n⋅min D(Q∣∣P )Q∈E 0

= P x ∈ T H ≐ e
⎝

⎛
1
n

Q∈Ec

⋃ Q

∣

∣

1
⎠

⎞
−n⋅min D(Q∣∣P )Q∈Ec 1

Q = arg D(Q∣∣P )∗

Q:E [f (x)]>γQ

min 0

Q0→1,γ
∗

f(x) = log P (x)/P (x)1 0

E(P ,f) ≜ {P , t ∈ [0, 1] : P (x) = P (x) ⋅ e , ∀x}0 t t 0
t⋅f (x)−α(t)

P0

f(⋅)

α(t)

e =α(t) P (x) ⋅∑x 0 e =t⋅f (x) E [e ]x∼P0
t⋅f (x)

P0 f(⋅)

η(t) ≜ E [f(x)]x∼Pt
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 monotonically increase with 

Connection between Fisher information  and KL divergence

Definition: Linear Family

Theorem: Pythagorean 

where 

Unique intersection since  monotonic increase with . 

, with :

D(P ∣∣P ) =∂t2
∂2

t 0 η(t) =∂t
∂ var [f(x)] =x∼Pt

It

η(t) t

It

L(f,γ) ≜ {Q : E [f(x)] =x∼Q γ}

∀Q ∈ L(f,γ) :

D(Q∣∣P ) = D(Q∣∣Q ) +D(Q ∣∣P )0
∗ ∗

0

Q ∈∗ L(f,γ) ∩ E(P ,f)0

η(t) ≜ E [f(x)]x∼Pt t

Q =∗ P ∈t∗ E E [f(x)] =x∼Pt∗ γ
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C

Corollary:  Typical Error Event Occurs on Exponential Family

has , with  and   . 

Definition:    is called the i-projection of  to the linear family . 

Takeaway message:

Hypothesis testing is about operations on the empirical distribution, in 
functional space;

Each problem has a pair , and the exponential family associated;

Projection of the observed empirical distribution to the exponential family. 

m-Projection: the Learning Story
Suppose we observe some data samples  with empirical distribution . 
We know that the true model belongs to a parameterized family

often chosen as an exponential family. 

Maximum Likelihood estimate of the unknown parameter . 

D(Q∣∣Q )∗ = E log = E logx∼Q [
Q (x)∗

Q(x)
] x∼Q [

P (x)t∗

Q(x)
]

= E logx∼Q [
P (x) ⋅ e0

t ⋅f (x)−α(t )∗ ∗

Q(x)
]

= E log −E [t f(x) − α (t)]x∼Q [
P (x)0

Q(x)
] x∼Q

∗ ∗

= E log −E [t f(x) − α (t)]x∼Q [
P (x)0

Q(x)
] x∼Q∗

∗ ∗

= E log −E logx∼Q [
P (x)0

Q(x)
] x∼Q∗ [

P (x)0

P (x) ⋅ e0
t f (x)−α (t)∗ ∗

]

= D(Q∣∣P ) −D(Q ∣∣P )0
∗

0

Q = arg D(Q∣∣P )∗

Q:E [f (x)]>γQ

min 0

Q ∈∗ E(P ,f)0 f(x) = log ( p (x)0

P (x)1 ) E [f(x)] =x∼Q∗ γ

Q∗ P0 L(f,γ)

P ,P0 1

x1
n (⋅;x )P̌ 1

n

P ≜ {P(⋅; θ); θ ∈ R}

θ
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Usually assume the family to be smooth,  exist, finite

Can have higher dimensional parameters

Why do maximum likelihood estimate? 

Distribution matching

Definition:  is called the m-projection of  to the model family 

Corollary: if  is an exponential family, , and suppose 
, then 

(x ) =θ̂ML 1
n arg max log P(x ; )θ̂ n

1 ∑i=1
n

i θ̂

P(x, θ)∂θ
∂

arg log P(x ; )
θ̂

max
n

1

i=1

∑
n

i θ̂ = arg E log P(x; )
θ̂

max x∼ (⋅;x )P̌x 1
n [ θ̂ ]

= arg E log
θ̂

min x∼ (⋅;x )P̌ 1
n [

P(x; )θ̂

(x;x )P̌ 1
n

]

= arg D (⋅;x )∣∣P(⋅; )
θ̂

min (P̌ 1
n θ̂ )

P(⋅; )θ̂ML P̌ P.

P P = E(P ,f)0

E [f(x)] =x∼P̌ γ

P(⋅; ) ∈θ̂ML P ∩ L(f,γ)
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Takeaway message:

A model family is a manifold/plane in the space of distributions;

Learning is also a projection, from the observed empirical distribution to 
the model family. 

3. The Geometry of Information Theory and Learning
A number of information theory results presented as geometric stories:

Rate Distortion, "Rate-distortion theory: A mathematical basis for data 
compression, Englewood Cliffs, NJ Prentice-Hall, 1971."

Error Exponent

Csiszar's book 

now publishers - Information Theory and Statistics: A Tutorial
Publication Date: 15 Dec 2004 Download extract Abstract This 
tutorial is concerned with applications of information theory 
concepts in statistics, in the finite alphabet setting. The information 

https://www.nowpublishers.com/article/Details/CIT004

What is difficult about this? 

The geometry is complex. 

Shun'ichi Amari - Wikipedia
Shun'ichi Amari, is a Japanese scholar born in 1936 in 
Tokyo, Japan. He majored in Mathematical Engineering 
in 1958 from the University of Tokyo then graduated in 

https://en.wikipedia.org/wiki/Shun%27ichi_Amari

Fisher information 

D(P ∣∣P ) =∂t2
∂2

t 0 η(t) =∂t
∂ var [f(x)] =x∼Pt

It

https://www.nowpublishers.com/article/Details/CIT-004
https://en.wikipedia.org/wiki/Shun%27ichi_Amari


Part I Information Geometry 9

but   can be an arbitrary function of . 

So  is a convex function of , but not clear how convex. 

If you have learned Cramer-Rao bound ...

What we need is a lot more. 

Broadcast channels: .  Even if  , doesn't mean 
the channel  is degraded. 

Dependence is not a single dimensional concept. 

Mismatched detection, universal detection: what happens if we didn't use 
the right  to make decision, but used a different  ? 

How bad are imperfect statistic models?

Increasing the dimensionality of , what collection/sequence of statistics

What statistic is more valuable in learning?

What happens with each iteration and each mini-batch of samples?

Evolution and convergence of learned models in functional space.  

From input/output neural networks to  Transfer Learning, Multi-Modal 
Learning

Network information theory and more complex learning tasks.  

There are often too many distributions to worry about

The ground truth

The parameterized family

The empiricals

The current model and the updates

Restrictions, side information, loss

Tuning of design parameters  

I ≥t 0 t

D(P ∣∣P )t 0 t

P ,Py∣x z∣x I(x; y) > I(x; z)
x→ z

f(x) = log
P (x)0

P (x)1 f (⋅)′

E

P (x; ) = P (x) ⋅ exp θ ⋅ f (x) − α( )x θ 0 [
i=1

∑
k

i i θ ]
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Basically: we cannot write it very clean for 1D problems with 2 distributions, 
but we need some analysis for multi-dimensional problems with many 
distributions. 

What is Geometry and Why Geometry? 
Distance  inner product, projection, basis, coordinates Hilbert Space for 
distributions)

Space of functions and Space of distributions. 

⟶
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Part II: The Local Geometry
Notation

True model ,  Observed empirical distribution ,  Estimated model .  

Color code

Definition

Theorem

Key Problem 

4. Fisher Information Metric
Definition: Fisher Information

For a parameterized family of distributions , the Fisher information matrix  
 is 

Can be shown to be Positive Semi-Definite

Can be shown to be a valid metric

Has a lot of good applications

Understand the Definition
Every distribution involved is close to 

Reference distribution:  

             

Think of all entries in  are restricted to be within 

Each  corresponds to a curve

P P̌ P̂

P = {P (⋅; ), ∈x θ θ R }k

I( ) ∈θ Rk×k

[I( )] ≜ E log P (x; ) log P (x; )θ ij x∼P (⋅; )x θ [(
∂θi

∂
x θ ) (

∂θj

∂
x θ )]

P (⋅; )x θ

R ≜x P (⋅; =x θ )0

θ (−ϵ,+ϵ)

θi

=θ [0,…,0, θ , 0,…,0] ⟶i P (x; ) ≜x θ R (x) ⋅x (1 + θ ⋅i f (x)), x ∈i X
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Log likelihood ratio

  

Perturbation accumulates

Locally viewed as exponential family with natural statistic . 

Fisher information:

obviously positive semi-definite

obviously a valid inner product: 

         

has to stay on the simplex:

           

Wait! now we are talking about both distributions and functions. 

For given two distributions   , define  by 

 

log P (x; ) −x θ =

R (x)x

log P (x; )x 0 log(1 + θ ⋅i f (x)) =i θ ⋅i f (x) +i O(ϵ ), ∀x ∈2 X

=θ [θ ,…, θ ] ⟶1 k P (x; ) ≜x θ R (x) ⋅x 1 + θ ⋅ f (x) +O(ϵ ) , x ∈( ∑i i i
2 ) X

f (⋅)i

[I( =θ )] =0 ij E [f (x)f (x)], ∀i, jx∼Rx i j

⟨f ,f ⟩ ≜i j E [f (x)f (x)]x∼Rx i j

E [f (x)] =x∼Rx i 0, ∀i

P ,P ∈1 2 N (R )ϵ x f ,f1 2

P (x) =i R (x) ⋅x (1 + f (x)), i =i 1, 2
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5. Information Vector

Definition: 
Fix a finite alphabet:  , 

Fix a reference distribution:   on , 

 For any function , with  

  The information vector for  is written as , with 

 For any distribution , 

  The information vector for  is written as , with 

First Properties: 
 Inner product and Covariance: 

                   

 Norm and variance:    

                    

 Orthogonal functions iff uncorrelated (w.r.t. )

K-L Divergence
For , 

X

R X

f : X ↦ R E [f(x)] =x∼R 0

f ϕ ∈(f ) RX

ϕ ≜ [ ⋅ f(x), x ∈ X ](f ) R(x) T

P ∈ N (R)ϵ

P ϕ ∈(P ) RX

ϕ (x) ≜ ⋅ − 1 = ⋅ (P(x) −R(x)), x ∈ X(P ) R(x) (
R(x)
P(x)

)
R(x)

1

⟨ϕ ,ϕ ⟩ =(f )1 (f )2 E [f (x)f (x)]x∼R 1 2

∥ϕ ∥ =(f ) 2 var [f(x)]x∼R

R

P ,Q ∈ N (R)ϵ

1
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Proof: 

This is our first local geometric result, let's start with notations. 

Write 

Now we have 

CLT and Asymptotic Normality
Recall Large Deviations / Sanov Theorem

D(P ∣∣Q) = ∥ϕ − ϕ ∥ + o(ϵ )
2
1 (P ) (Q) 2 2

D(Q∣∣P) = ∥ϕ − ϕ ∥ + o(ϵ )
2
1 (P ) (Q) 2 2

f ↔ P ↔ ϕ(P )

g ↔ Q↔ ϕ(Q)

: P(x) = R(x) ⋅ (1 + f(x)) = R(x) ⋅ 1 + = R(x) + ⋅ ϕ (x)(
R(x)

ϕ (x)(P )

) R(x) (P )

: Q(x) = R(x) ⋅ (1 + g(x)) = R(x) ⋅ 1 + = R(x) + ⋅ ϕ (x)(
R(x)

ϕ (x)(Q)

) R(x) (Q)

D(P ∣∣Q) = P(x) ⋅ log = P(x) ⋅ log − log
x

∑
Q(x)
P(x)

x

∑ (
R(x)
P(x)

R(x)
Q(x)

)

= P(x) ⋅ log 1 + f(x) − log 1 + g(x)
x

∑ [ ( ) ( )]

= [R(x) + ] ⋅ − − + +O(ϵ )
x

∑

O(ϵ)

R(x) ⋅ f(x)

⎣

⎡

O(ϵ)

f(x)

O(ϵ )2

f (x)
2
1 2

O(ϵ)

g(x)

O(ϵ )2

g (x)
2
1 2 3

⎦

⎤

=

0

R(x)(f(x) − g(x))
x

∑

+ R(x) − f (x) + g (x) + f(x) ⋅ (f(x) − g(x)) + o(ϵ )
x

∑ (
2
1 2

2
1 2 ) 2

= E [(f(x) − g(x)) ] + o(ϵ )
2
1

x∼R
2 2

P ( x ∈ T )x ∼i.i.d.P1
n 1

n
Q ≐ e−nD(Q∣∣P )

= e−n⋅ ∥ϕ −ϕ ∥ +o(ϵ )2
1 (Q) (P) 2 2
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The empirical distribution   is random, corresponding  is also random

Gaussian distributed around the ensemble distribution 

With approximate a Gaussian distribution, white, with variance  per dimension.  

Local parameter estimate: empirical average  estimate 

CLT if  has zero-mean and unit variance w.r.t. ,         

Asymptotic efficiency of ML estimate:

            

The business between a finite alphabet and a continuous alphabet. 

6. Example: Akaike Information Criterion

Akaike information criterion - Wikipedia
The Akaike information criterion ( AIC is an estimator of 
prediction error and thereby relative quality of statistical 
models for a given set of data. Given a collection of models 

https://en.wikipedia.org/wiki/Akaike_information_criterion

Consider a sequence of nested parameterized families 

with increasing dimensionality of parameters

Observe   , solve for each family 

Larger , better matching,  

Which  to choose? How to penalize bigger families? Avoid over-fitting. 

Akaike's observation:
We really want to minimize 

(⋅; x ) =P̌x 1
n Q ϕ(Q)

P ↔ ϕ(P )

1/n

∝ θ̂ML

f(x) R f(x ) →
n
1 ∑i i N(0, 1)

⋅n ( −θ̂ML θ) → N(0, )
I (θ)
1

P ⊂1 P ⊂2 …⊂ Pm

P =k {P (⋅; θ ), θ ∈x
k k R }, k =k 1,…,m

x =1
n x1

n

= arg D( (⋅; x )∣∣ )P̂ML
k

∈PP̂ k

min P̌ 1
n P̂

k

k

^

https://en.wikipedia.org/wiki/Akaike_information_criterion
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but observe  . 

Locally: 
 All ML estimates are just projections

 What to compare? 

but how about 

  is asymptotically normal with 
variance  per dimension. 

Given , need to 

subtract the average power of ,  

add the average power of ,  

7. Projections and Inner Products
What does the direction of information vectors represent? 

Consider  i.i.d.  , 

but we observe empirical distribution 

We would like to evaluate the empirical average of a function 

w.l.o.g. assume     

Information vector  , with 

D(P ∣∣ )P̂

D( ∣∣ )P̌ P̂

↔P̂ML
k π ( )k ϕ̌

∥π ( ) −2 ϕ̌ ∥ <ϕ̌ ∥π ( ) −1 ϕ̌ ∥ϕ̌

∥π ( ) −2 ϕ̌ ϕ∥ ≷ ∥π ( ) −1 ϕ̌ ϕ∥

−ϕ̌ ϕ

1/n

∥ −ϕ̌ π ( )∥k ϕ̌
2

( −ϕ̌ ϕ) ⊥ P ∼ (∣X ∣ −
n
1 k)

( −ϕ̌ ϕ) ∥ P ∼ kn
1

∥ − π ( )∥ + − ⟶ D( ∣∣ ) +
k
min ϕ̌ k ϕ̌

2

n

k

n

∣X ∣ − k

k
min P̌ P̂ML

k

n

k

x ,…, x ∼1 n Rx

P̌

(x) =ϕ̌ , ∀x
R(x)

(x)−R(x)P̌

f : X ↦ R

E [f(x)] =x∼R 0

ψ↔ f ψ(x) = ⋅R(x) f(x), ∀x
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The empirical average

Back to Binary Hypothesis Testing
Recall linear decision region

and the optimal 

A binary query corresponds to a vector

for the log-likelihood function

LLR = project observed empirical distribution  on 

length = , maximum one-sided error 
exponent

What if we use a different statistic  ?

f(x )
n

1

i=1

∑
n

i = E [f(x)] = (x) ⋅ f(x)x∼P̌
x

∑ P̌

= R(x) + ⋅ (x) ⋅
x

∑( R(x) ϕ̌ )
R(x)

ψ(x)

= ⟨ ,ψ⟩ϕ̌

log f(x ) =
n
1 ∑i=1

n
i E [f(x)] γx∼P̌

Ĥ0

≷
Ĥ1

f(x) = log , ∀xP (x)0

P (x)1

ψ ≜ ϕ − ϕ(P )1 (P )2

=
R(x)

(P (x) −R(x)) − (P (x) −R(x))1 0

= ⋅ − 1 − − 1R(x) [(
R(x)
P (x)1 ) (

R(x)
P (x)0 )]

≈ ⋅ log − logR(x) [ (
R(x)
P (x)1 ) (

R(x)
P (x)0 )]

= ⋅ f(x) = ϕR(x) (f )

ϕ̌ ψ

D(P ∣∣P )1 0

f =′  log P0

P1

~
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Maximum one-sided error exponent reduced by factor of 

                 

Measures how much is  useful in answering a 
question about  !!!

8. Information Vector for Joint Distributions, CDM

 with reference 

Choose , independent with the same marginals

Definition: Canonical Dependence Matrix CDM  

Inherited property 

           

 have symmetric positions

Describes how the two random variables are dependent

Can be viewed as a channel 

≜ arg D(Q∣∣P )P
~
1

Q:E [f ]=E [f ]Q
′

P1
′

min 0

cos ∠(ϕ ,ϕ )
∣
∣ ( (f ) (f )′ )

∣
∣2

f (x)′

f

Pxy Rxy

R =xy P ⋅x Py

B ∈ RX×Y

B(x,y) ≜ , (x,y) ∈ X × Y
P (x)P (y)x y

P (x,y) − P (x)P (y)xy x y

∥B∥ ≈2
1 2 D(P ∣∣P P ) =xy x y I(x; y)

x, y
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 defines a channel

By definition, if input is , the output is 

If we change input to be  

  

The output would be   , 

Theorem:  - matrix as a map

           

Map of functions

W = Py∣x

R =x Px R =y Py

Q ↔x ∈ϕ RX

Q (x) =x R (x) +x ⋅R (x)x ϕ(x), x ∈ X

Q ↔y ∈ψ RY

Q (y)y = P (y∣x) ⋅Q (x)
x

∑ y∣x x

= P (y∣x) ⋅R (x) ⋅ 1 +
x

∑ y∣x x (
R (x)x

ϕ(x)
)

= R (y) + P (x,y) ⋅y

x

∑ xy
R (x)x

ϕ(x)

= R (y) + P (x,y) − P (x)P (y) ⋅y

x

∑ ( xy x y )
R (x)x

ϕ(x)

= R (y) + ⋅ ⋅ ϕ(x)y R (y)y

⎝

⎛

x

∑

B(x,y)

R (x)x R (y)y

P (x,y) − P (x)P (y)xy x y

⎠

⎞

B

= B ⋅ψ ϕ
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Suppose 

Define , what function operation is this? 

Similarly 

 matrix is the conditional expectation operator. 

↔ f :ϕ

↔ g :ψ

⋅ f(x) = ϕ(x), x ∈ XR (x)x

⋅ g(y) = ψ(y), y ∈ YR (y)y

=ψ B ⋅ ϕ

g(y) = ⋅ ψ(y) = ⋅ B(x,y) ⋅ ϕ(x)
R (y)y

1

R (y)y

1
(

x

∑ )

= ⋅ ⋅ ϕ(x)
R (y)y

1
(

x

∑
P (x)P (y)x y

P (x,y) − P (x)P (y)xy x y )

= ⋅
x

∑
P (y)y

P (x,y)xy

(x)Rx

ϕ(x)

= E[f(x)∣y = y], ∀y

f(x) = E[g(y)∣x = x], ∀x

B
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Part III: Machine Learning

9. Example: Conjugator Prior Family

Definition: Given an observation model , a parameterized family of prior 
distribution

     is called the conjugate prior family if for any value of , 

. 

Update knowledge turned into update parameters

Bernoulli/Beta; Categorical/ Dirichlet, Poisson/Gamma, Normal (fix )/ Normal

Diaconis, Ylvisker 1979

Conjugate Priors for Exponential Families
Let $X$ be a random vector distributed according to an exponential 
family with natural parameter $\theta \in \Theta$. We characterize 
conjugate prior measures on $\Theta$ through the property of 

https://projecteuclid.org/journals/annals-of-statistics/volume-7/i
ssue-2/Conjugate-Priors-for-Exponential-Families/10.1214/aos/1176
344611.full

If the observation model is an exponential family 

then the conjugate prior  must satisfy that for all , evaluated w.r.t. 
, 

 , for some constants .

The geometric view: 

Py∣x

P = {P (⋅; θ), θ ∈x R} y

P (⋅∣y) ∈x∣y P

σ2

P (y∣x) =y∣x exp(x ⋅ t(y) − α(x))

P (⋅; θ)x θ P (⋅; θ) ⋅x

Py∣x

E[E[t(y)∣x]∣y] = a ⋅ t(y) + b a, b

https://projecteuclid.org/journals/annals-of-statistics/volume-7/issue-2/Conjugate-Priors-for-Exponential-Families/10.1214/aos/1176344611.full
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 Observe a sequence  with 
empirical distribution 

 Symmetric story, the posterior

 Conjugate prior: regardless of  , the 
posterior is always in a 1D family :  
remains in the same direction. 

 is a rank-1 matrix:   

     

10. The multi-dimensional nature of dependence 
  

                        

Dependence over multiple modes

Example: broadcast channel, 

 does not mean we cannot transmit a private message  
that is not decodable by .

More capable El-Gammal  79') :  dominates  in every mode. 

Example: Strong DPI

All singular values of  are less than or equal to . 

But the contraction is really not a 1D scaling issue. 

Literature of slightly different formulations of SDPI.

,…,y̌1 y̌n
=P̌y Q ↔y ψ

P (⋅∣ ) =x∣y1
n y̌1

n Q ↔x =ϕ B ⋅T ψ

ψ

ϕ

B B = σ ⋅ ⋅ψ ϕT

B ⋅B ⋅T =ψ σ ⋅2 ⇔ψ E[E[t(y)∣x]∣y] = a ⋅ t(y)

B = σ ⋅∑i i ⋅ui vi
T

I(x; y) ≈ ⋅2
1 σ∑i i

2

I(x; y) > I(x; z) x→ z

y

Bxy Bxz

∥B ⋅xy ∥ ≥ϕ
x
2 ∥B ⋅xz ∥ , ∀ϕ

x
2 ϕ

x

B 1

∥B ⋅xy ∥ ≤ϕ
x
2 ∥ ∥ , ∀ ⇔ϕ

x
2 ϕ

x
D(P ∣∣Q ) ≤y y D(P ∣∣Q ),x x
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Example: Hermite Polynomial for Additive Gaussian Noise Channel

11. Renyi Correlation, CCA
Definition: Hirschfeld-Gebelein-Renyi Maximal correlation: 

Given : 

where  satisfies 

Defined as a measure of level of dependence 1959. 

Generalizes to multiple pairs of functions . 

Canonical Dependence Analysis, Correspondence Analysis. 

12. Operations in Neural Networks

Pxy

ρ ≜ E [f(x) ⋅ g(y)]
f ,g
max x,y∼Pxy

f, g E[f(x)] = E[g(y)] = 0, E[f (x)] =2 E[g (y)] =2 1

f ,…,f ; g ,…, g1 k 1 k



Part III Machine Learning 4

Classification . 

Last layer input: , 

Last layer weights: , 

Softmax activation: 

Cross-Entropy Loss, ML for discriminative model. 

       

          

model = Sequential() 
model.add(...) 
model.add(Dense(yCard, activation='softmax', input_dim=k)) 
sgd = SGD(4, decay=1e-2, momentum=0.9, nesterov=True) 
model.compile(loss='categorical_crossentropy', optimizer=sgd)

In the local setup

 Reference 

y ∈ {1,…, ∣Y ∣}

f (x),…,f (x)1 k

g (y), i =i 1,…,k;y ∈ Y

(y∣x) = , y ∈ YP̂y∣x
(f ,g)

exp f (x) ⋅ g (y ) + b(y )∑y ′ [∑i=1
k

i i
′ ′ ]

exp f (x) ⋅ g (y) + b(y)[∑i=1
k

i i ]

arg D( ⋅ ∣∣ ⋅ )
f ,g
min P̌x P̌y∣x P̌x P̂

y∣x
(f ,g)

ˇ
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 Learned model 

 Optimization

 Solution: SVD

 How was this numerically solved? 

BackProp: 

Fix :    ,  equivalent to   

Fix :      equivalent to   

R (x)x

R (y)y

= (x), ∀xP̌x

∝ e , ∀yb(y)

(y∣x) = R (y) ⋅ , y ∈ YP̂y∣x
(f ,g)

y

exp f (x) ⋅ g (y )∑y ′ [∑i=1
k

i i
′ ]

exp f (x) ⋅ g (y)[∑i=1
k

i i ]

⟶ R , :P̂
y∣x
(f ,g)

y B̂(f ,g)

(x,y) = ⋅ f (x) ⋅ g (y) ∀x,yB̂(f ,g) R (x)R (y)x y (
i=1

∑
k

i i )

arg ∥ − ∥
f ,g
min B̌ B̂(f ,g) 2

f g(y) ← E[f(x)∣y = y], ∀y ←ψ(g) B ⋅ ϕ(f )

g f(x) ← E[g(y)∣x = x], ∀x, ←ϕ(f ) B ⋅T ψ(g)
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13. What is this good for? 
It is good to know that NNs are SVD solvers;

H-score implementation

Allows aggressive dimension reduction

Direct operation on the feature functions 

Choice of reference distribution  and iterative algorithms, convergence 
analysis. 

Knowledge subspace: . Interpretation and evaluation of learning 
quality. 

Multi-variate, multi-modal, multi-task problems. 

H( , )f g

H( )f

= ∥ − ∥ ≜ E (x) ⋅ (y) − trace cov( ) ⋅ cov( )B̌ B̂(f ,g) 2
x,y∼P̌xy

[f T g ]
2
1

( f g )

= H( , ) ≜ E E[ (x)∣y = y] ⋅ cov( ) ⋅ E[ (x)∣y = y]f g∗ y∼py
[ f T f −1 f ]

Rxy

span(f ,…,f )1 k


