Part I: Information Geometry

Color code
Definition
Theorem
Key Problem

1. The Center Piece of Information Theory

Definition: K-L Divergence (Kullback-Liebler)

For P,Q both probability distributions on the same finite alphabet ${\mathcal X}$

 $D(P||Q) riangleq \sum_{x \in \mathcal{X}} P(x) \log rac{P(x)}{Q(x)}$

• Entropy and mutual information are both special cases

$$\begin{split} H(\mathsf{x}) &= H(P_\mathsf{x}) = H(U) - D(P_\mathsf{x}||U)\\ I(\mathsf{x};\mathsf{y}) &= D(P_\mathsf{xy}||P_\mathsf{x}P_\mathsf{y}) \end{split}$$

• Information inequality

 $D(P||Q) \geq 0,$ equality iff P = Q

Convexity

D(P||Q) is convex in (P,Q)

Continuity

Why K-L divergence matters?

Notation:

• Empirical distribution

$$\check{P}_{\mathsf{x}}(a;x_1^n) = rac{1}{n}\sum_{i=1}^n \mathbb{1}_{(x_i==a)}$$

• Type class:

$$T_Q riangleq \{x_1^n \in \mathcal{X}^n : \check{P}_\mathsf{x}(\cdot; x_1^n) = Q(\cdot)\}$$

• Empirical Average

$$rac{1}{n}\sum_{i=1}^n g(x_i) = \mathbb{E}_{\mathsf{x}\sim\check{P}_\mathsf{x}}(\cdot;x_1^n)[g(\mathsf{x})]$$

Sanov's Theorem

1. Probability of type class

 $\mathbb{P}_{\mathsf{x}_1^n \sim \mathrm{i.i.d.}P}$ ($\mathsf{x}_1^n \in T_Q$) $\doteq e^{-nD(Q||P)}$

2. One type dominates: E is a subset of distributions on $\mathcal X$,

 $\mathbb{P}_{\mathsf{x}_1^n \sim \mathrm{i.i.d.}P}$ ($\mathsf{x}_1^n \in \cup_{Q \in E} T_Q$) $\doteq e^{-n \cdot D(Q^* || P)}$

where $Q^* = \arg\min_{Q \in E} D(Q||P)$

Quick review of the Channel Coding Theorem

• Transmit a codeword x_1^n , receive y_1^n ,

 (x_1^n,y_1^n) jointly typical w.r.t. $P_{\mathsf{x}\mathsf{y}}$

- Have some other "incorrect" codewords: $ilde{x}_1^n[j],\,j=1,\dots,M$ each j: $(ilde{x}_1^n[j],y_1^n)\sim P_{\sf x}P_{\sf y}$
- It's unlikely for an incorrect codeword to appear typical with the received $\mathbb{P}_{(\tilde{x}_1^n,y_1^n)\sim P_{\mathsf{x}}P_{\mathsf{y}}}((\tilde{x}_1^n,y_1^n)\in T_{P_{\mathsf{x}\mathsf{y}}})\doteq e^{-n\cdot D(P_{\mathsf{x}\mathsf{y}}||P_{\mathsf{x}}P_{\mathsf{y}})}=e^{-n\cdot I(\mathsf{x};\mathsf{y})}$
- With $M = e^{nR}$ incorrect codewords, $R < I(\mathbf{x}; \mathbf{y})$, the union bound of the above is still small.

Similar stories in rate distortion, error exponents,

2. Distance and Projection

- K-L divergence is a measure of distance between distributions
- There are many other ways to define divergence

eg. $f(\cdot)$ convex, continuous, and f(1)=0

$$D_f(P||Q) = \sum_x Q(x) \cdot f\left(rac{P(x)}{Q(x)}
ight)$$

i-Projection, the binary hypothesis testing story

Consider x_1, \ldots, x_n i.i.d. distributed from either P_0 or P_1 .

• Log-likelihood ratio test

$$rac{1}{n}\sum_{i=1}^n\,\lograc{P_1(x_i)}{P_0(x_i)}\,\,\, \stackrel{\hat{H}_1}{\stackrel{>}{\gtrsim}\,\,\, \gamma$$

• The statistic is an empirical average

$$rac{1}{n}\sum_{i=1}^n \ \log rac{P_1(x_i)}{P_0(x_i)} = \mathbb{E}_{\mathsf{x}\sim\check{P}(\cdot;x_1^n)}\left[\log rac{P_1}{P_0}(\mathsf{x})
ight]$$

• The decision region is a subset of type classes

$$E riangleq \{Q: \mathbb{E}_{\mathsf{x} \sim Q} \left[\log rac{P_1}{P_0}(\mathsf{x})
ight] \geq \gamma\}$$

claim
$$\hat{H}_1$$
 iff $\mathsf{x}_1^n = x_1^n \in igcup_{Q \in E} \; T_Q$

• Probability of Error

$$\mathbb{P}(H_0 o \hat{H}_1) = \mathbb{P}\left(\left. \mathsf{x}_1^n \in igcup_{Q \in E} T_Q \,\middle|\, H_0
ight) \doteq e^{-n \cdot \min_{Q \in E} D(Q||P_0)} \ \mathbb{P}(H_1 o \hat{H}_0) = \mathbb{P}\left(\left. \mathsf{x}_1^n \in igcup_{Q \in E^c} T_Q \,\middle|\, H_1
ight) \doteq e^{-n \cdot \min_{Q \in E^c} D(Q||P_0)} \ \mathbb{P}_0^{\mathsf{p}_1}$$

• The optimization problem

$$Q^* = rg \min_{Q: \mathbb{E}_Q[f(\mathsf{x})] > \gamma} \; D(Q||P_0)$$

- Dominating error event $Q^*_{0
 ightarrow 1,\gamma}$
- testing statistic $f(x) = \log P_1(x)/P_0(x)$

Definition: Exponential Family (1-D)

$$\mathcal{E}(P_0,f) riangleq \{P_t,t \in [0,1]: P_t(x) = P_0(x) \cdot e^{t \cdot f(x) - lpha(t)}, orall x\}$$

- P_0 : a starting point
- $f(\cdot)$: natural statistic (meaning later)
- $\alpha(t)$: normalization factor

$$e^{lpha(t)} = \sum_x P_0(x) \cdot e^{t \cdot f(x)} = \mathbb{E}_{\mathsf{x} \sim P_0}[e^{t \cdot f(\mathsf{x})}]$$

also called the log-moment generation function.

- viewed as "exponential tilting" on P_0 according to $f(\cdot).$
- Empirical average

$$\eta(t) riangleq \mathbb{E}_{\mathsf{x} \sim P_t}[f(\mathsf{x})]$$

• A number of nice properties

$$rac{\partial^2}{\partial t^2} D(P_t || P_0) = rac{\partial}{\partial t} \eta(t) = ext{var}_{\mathsf{x} \sim P_t} \left[f(\mathsf{x})
ight] = \mathcal{I}_t$$

- $\eta(t)$ monotonically increase with t
- Connection between Fisher information \mathcal{I}_t and K-L divergence

Definition: Linear Family

$$\mathcal{L}(f,\gamma) riangleq \{Q: \mathbb{E}_{\mathsf{x} \sim Q}[f(\mathsf{x})] = \gamma\}$$
Linear De Begin

Theorem: Pythagorean

$$orall Q \in \mathcal{L}(f,\gamma):
onumber \ D(Q||P_0) = D(Q||Q^*) + D(Q^*||P_0)
onumber$$

where $Q^* \in \mathcal{L}(f,\gamma) \cap \mathcal{E}(P_0,f)$

• Unique intersection since $\eta(t) \triangleq \mathbb{E}_{\mathsf{x} \sim P_t}[f(\mathsf{x})]$ monotonic increase with t. $Q^* = P_{t^*} \in \mathcal{E}$, with $\mathbb{E}_{\mathsf{x} \sim P_{t^*}}[f(\mathsf{x})] = \gamma$:

$$\begin{split} D(Q||Q^*) &= \mathbb{E}_{\mathsf{x}\sim Q} \left[\log \frac{Q(\mathsf{x})}{Q^*(\mathsf{x})} \right] = \mathbb{E}_{\mathsf{x}\sim Q} \left[\log \frac{Q(\mathsf{x})}{P_{t^*}(\mathsf{x})} \right] \\ &= \mathbb{E}_{\mathsf{x}\sim Q} \left[\log \frac{Q(\mathsf{x})}{P_0(\mathsf{x}) \cdot e^{t^* \cdot f(\mathsf{x}) - \alpha(t^*)}} \right] \\ &= \mathbb{E}_{\mathsf{x}\sim Q} \left[\log \frac{Q(\mathsf{x})}{P_0(\mathsf{x})} \right] - E_{\mathsf{x}\sim Q}[t^*f(\mathsf{x}) - \alpha^*(t)] \\ &= \mathbb{E}_{\mathsf{x}\sim Q} \left[\log \frac{Q(\mathsf{x})}{P_0(\mathsf{x})} \right] - E_{\mathsf{x}\sim Q^*}[t^*f(\mathsf{x}) - \alpha^*(t)] \\ &= \mathbb{E}_{\mathsf{x}\sim Q} \left[\log \frac{Q(\mathsf{x})}{P_0(\mathsf{x})} \right] - E_{\mathsf{x}\sim Q^*} \left[\log \frac{P_0(\mathsf{x}) \cdot e^{t^*f(\mathsf{x}) - \alpha^*(t)}}{P_0(\mathsf{x})} \right] \\ &= D(Q||P_0) - D(Q^*||P_0) \end{split}$$

Corollary: Typical Error Event Occurs on Exponential Family

 $Q^* = rg \min_{Q:\mathbb{E}_Q[f(\mathsf{x})] > \gamma} \ D(Q||P_0)$

has
$$Q^*\in \mathcal{E}(P_0,f)$$
, with $f(x)=\log\left(rac{P_1(x)}{p_0(x)}
ight)$ and $\mathbb{E}_{\mathsf{x}\sim Q^*}[f(\mathsf{x})]=\gamma$.

Definition: Q^* is called the i-projection of P_0 to the linear family $\mathcal{L}(f, \gamma)$.

Takeaway message:

- Hypothesis testing is about operations on the empirical distribution, in functional space;
- Each problem has a pair P_0, P_1 , and the exponential family associated;
- Projection of the observed empirical distribution to the exponential family.

m-Projection: the Learning Story

Suppose we observe some data samples x_1^n with empirical distribution $\check{P}(\cdot; x_1^n)$. We know that the true model belongs to a parameterized family

 $\mathcal{P} riangleq \{ P(\cdot; heta); heta \in \mathbb{R} \}$

often chosen as an exponential family.

Maximum Likelihood estimate of the unknown parameter θ .

$$\hat{ heta}_{\mathsf{ML}}(x_1^n) = rg\max_{\hat{ heta}} rac{1}{n} \sum_{i=1}^n \log P(x_i; \hat{ heta})$$

- Usually assume the family to be smooth, $rac{\partial}{\partial heta} P(x, heta)$ exist, finite
- · Can have higher dimensional parameters
- Why do maximum likelihood estimate?
- Distribution matching

$$egin{argamatrix} rgmax & rac{1}{n}\sum_{i=1}^n\log P(x_i;\hat{ heta}) = rgmax & \mathbb{E}_{\mathsf{x}\sim\check{P}_\mathsf{x}}(\cdot;x_1^n)\left[\log P(\mathsf{x};\hat{ heta})
ight] \ &= rgmin & \mathbb{E}_{\mathsf{x}\sim\check{P}(\cdot;x_1^n)}\left[\log rac{\check{P}(\mathsf{x};x_1^n)}{P(\mathsf{x};\hat{ heta})}
ight] \ &= rgmin & eta \left[\log rac{\check{P}(\mathsf{x};x_1^n)}{P(\mathsf{x};\hat{ heta})}
ight] \ &= rgmin & D\left(\check{P}(\cdot;x_1^n)||P(\cdot;\hat{ heta})
ight) \end{split}$$

Definition: $P(\cdot; \hat{\theta}_{\mathsf{ML}})$ is called the m-projection of \check{P} to the model family \mathcal{P} . **Corollary:** if \mathcal{P} is an exponential family, $\mathcal{P} = \mathcal{E}(P_0, f)$, and suppose $\mathbb{E}_{\mathsf{x} \sim \check{P}}[f(\mathsf{x})] = \gamma$, then $P(\cdot; \hat{\theta}_{\mathsf{ML}}) \in \mathcal{P} \cap \mathcal{L}(f, \gamma)$

Takeaway message:

- A model family is a manifold/plane in the space of distributions;
- Learning is also a projection, from the observed empirical distribution to the model family.

3. The Geometry of Information Theory and Learning

- A number of information theory results presented as geometric stories:
 - Rate Distortion, "Rate-distortion theory: A mathematical basis for data compression, Englewood Cliffs, NJ: Prentice-Hall, 1971."
 - Error Exponent
 - Csiszar's book

now publishers - Information Theory and Statistics: A Tutorial Publication Date: 15 Dec 2004 Download extract Abstract This tutorial is concerned with applications of information theory concepts in statistics, in the finite alphabet setting. The information Information Theo and Statistics: A Tutorial

https://www.nowpublishers.com/article/Details/CIT-004

- What is difficult about this?
 - The geometry is complex.

Shun'ichi Amari - Wikipedia

Shun'ichi Amari, is a Japanese scholar born in 1936 in Tokyo, Japan. He majored in Mathematical Engineering in 1958 from the University of Tokyo then graduated in

W https://en.wikipedia.org/wiki/Shun%27ichi_Amari

• Fisher information

$$rac{\partial^2}{\partial t^2} D(P_t || P_0) = rac{\partial}{\partial t} \eta(t) = \operatorname{var}_{\mathsf{x} \sim P_t} \left[f(\mathsf{x})
ight] = \mathcal{I}_t$$

but $\mathcal{I}_t \geq 0$ can be an arbitrary function of t.

So $D(P_t||P_0)$ is a convex function of t, but not clear how convex.

- If you have learned Cramer-Rao bound ...
- What we need is a lot more.
 - Broadcast channels: $P_{y|x}, P_{z|x}$. Even if I(x; y) > I(x; z), doesn't mean the channel $x \rightarrow z$ is degraded.

Dependence is not a single dimensional concept.

• Mismatched detection, universal detection: what happens if we didn't use the right $f(x) = \log rac{P_1(x)}{P_0(x)}$ to make decision, but used a different $f'(\cdot)$?

How bad are imperfect statistic models?

• Increasing the dimensionality of ${\cal E}$, what collection/sequence of statistics

$$P_{\mathsf{x}}(x; \underline{ heta}) = P_0(x) \cdot \exp\left[\sum_{i=1}^k heta_i \cdot f_i(x) - lpha(\underline{ heta})
ight]$$

What statistic is more valuable in learning?

What happens with each iteration and each mini-batch of samples?

Evolution and convergence of learned models in functional space.

 From input/output neural networks to Transfer Learning, Multi-Modal Learning

Network information theory and more complex learning tasks.

- There are often too many distributions to worry about
 - The ground truth
 - The parameterized family
 - The empiricals
 - The current model and the updates
 - Restrictions, side information, loss
 - Tuning of design parameters

• **Basically**: we cannot write it very clean for 1-D problems with 2 distributions, but we need some analysis for multi-dimensional problems with many distributions.

What is Geometry and Why Geometry?

- Distance → inner product, projection, basis, coordinates (Hilbert Space for distributions)
- Space of functions and Space of distributions.

Part II: The Local Geometry

Notation

True model P, Observed empirical distribution \check{P} , Estimated model \hat{P} .

Color code

Definition

Theorem

Key Problem

4. Fisher Information Metric

Definition: Fisher Information

For a parameterized family of distributions $\mathcal{P} = \{P_x(\cdot; \underline{\theta}), \underline{\theta} \in \mathbb{R}^k\}$, the Fisher information matrix $\mathcal{I}(\underline{\theta}) \in \mathbb{R}^{k \times k}$ is

$$[\mathcal{I}(\underline{ heta})]_{ij} \triangleq \mathbb{E}_{\mathsf{x} \sim P_{\mathsf{x}}(\cdot;\underline{ heta})} \left[\left(rac{\partial}{\partial heta_i} \log P_{\mathsf{x}}(\mathsf{x};\underline{ heta})
ight) \left(rac{\partial}{\partial heta_j} \log P_{\mathsf{x}}(\mathsf{x};\underline{ heta})
ight)
ight]$$

- Can be shown to be Positive Semi-Definite
- Can be shown to be a valid metric
- Has a lot of good applications

Understand the Definition

- Every distribution involved is close to $P_{\mathsf{x}}(\cdot;\underline{ heta})$
 - Reference distribution:

$$R_{\mathsf{x}} \triangleq P_{\mathsf{x}}(\cdot;\underline{\theta} = \underline{0})$$

- Think of all entries in $\underline{ heta}$ are restricted to be within $(-\epsilon,+\epsilon)$
- Each $heta_i$ corresponds to a curve

$$\underline{ heta} = [0,\ldots,0, heta_i,0,\ldots,0] \quad \longrightarrow \quad P_{\mathsf{x}}(x;\underline{ heta}) riangleq R_{\mathsf{x}}(x) \cdot (1+ heta_i \cdot f_i(x)), \; x \in \mathcal{X}$$

• Log likelihood ratio

$$\log P_{\mathsf{x}}(x; \underline{ heta}) - \underbrace{\log P_{\mathsf{x}}(x; \underline{0})}_{R_{\mathsf{x}}(x)} = \log(1 + heta_i \cdot f_i(x)) = heta_i \cdot f_i(x) + O(\epsilon^2), \ orall x \in \mathcal{X}$$

• Perturbation accumulates

$$\underline{ heta} = [heta_1, \dots, heta_k] \ \longrightarrow \ P_{\mathsf{x}}(x; \underline{ heta}) riangleq R_{\mathsf{x}}(x) \cdot \left(1 + \sum_i heta_i \cdot f_i(x) + O(\epsilon^2)
ight), \ x \in \mathcal{X}$$

- Locally viewed as exponential family with natural statistic $f_i(\cdot)$.
- Fisher information:

$$[\mathcal{I}({ heta} = { extsf{0} })]_{ij} = \mathbb{E}_{\mathsf{x} \sim R_\mathsf{x}}[f_i(\mathsf{x})f_j(\mathsf{x})], \quad orall i,j \in \mathbb{R}$$

- obviously positive semi-definite
- obviously a valid inner product:

$$\langle f_i, f_j
angle riangle \mathbb{E}_{\mathsf{x} \sim R_\mathsf{x}} \left[f_i(\mathsf{x}) f_j(\mathsf{x})
ight]$$

• has to stay on the simplex:

 $\mathbb{E}_{\mathsf{x}\sim R_{\mathsf{x}}}[f_i(\mathsf{x})]=0, \ orall i$

- Wait! now we are talking about both distributions and functions.
 - For given two distributions $\,P_1,P_2\in\mathcal{N}_\epsilon(R_{\mathsf{x}})$, define f_1,f_2 by

$$P_i(x)=R_{\mathsf{x}}(x)\cdot(1+f_i(x)), \quad i=1,2$$

5. Information Vector

Definition:

- Fix a finite alphabet: \mathcal{X} ,
- Fix a reference distribution: R on \mathcal{X} ,

1. For any function
$$f:\mathcal{X}\mapsto\mathbb{R}$$
 , with $\ \mathbb{E}_{\mathsf{x}\sim R}[f(x)]=0$

The information vector for f is written as $\phi^{(f)} \in \mathbb{R}^{\mathcal{X}}$, with

$$\phi^{(f)} riangleq [\sqrt{R(x)} \cdot f(x), \ x \in \mathcal{X}]^T$$

2. For any distribution $P\in\mathcal{N}_{\epsilon}\left(R
ight)$,

The information vector for P is written as $\phi^{(P)} \in \mathbb{R}^{\mathcal{X}}$, with

$$\phi^{(P)}(x) riangleq \sqrt{R(x)} \cdot \left(rac{P(x)}{R(x)} - 1
ight) = rac{1}{\sqrt{R(x)}} \cdot (P(x) - R(x)), \; x \in \mathcal{X}$$

First Properties:

1. Inner product and Covariance:

$$\langle \phi^{(f_1)}, \phi^{(f_2)}
angle = \mathbb{E}_{\mathsf{x} \sim R} \left[f_1(\mathsf{x}) f_2(\mathsf{x})
ight]$$

2. Norm and variance:

$$\|\phi^{(f)}\|^2 = \operatorname{var}_{\mathsf{x}\sim R}[f(\mathsf{x})]$$

3. Orthogonal functions iff uncorrelated (w.r.t. R)

K-L Divergence

For $P,Q\in\mathcal{N}_{\epsilon}(R)$,

$$egin{aligned} D(P||Q) &= rac{1}{2} \| \phi^{(P)} - \phi^{(Q)} \|^2 + o(\epsilon^2) \ D(Q||P) &= rac{1}{2} \| \phi^{(P)} - \phi^{(Q)} \|^2 + o(\epsilon^2) \end{aligned}$$

Proof:

This is our first local geometric result, let's start with notations. Write

$$f \leftrightarrow P \leftrightarrow \phi^{(P)}: P(x) = R(x) \cdot (1 + f(x)) = R(x) \cdot \left(1 + rac{\phi^{(P)}(x)}{\sqrt{R(x)}}
ight) = R(x) + \sqrt{R(x)} \cdot \phi^{(P)}(x)$$
 $g \leftrightarrow Q \leftrightarrow \phi^{(Q)}: Q(x) = R(x) \cdot (1 + g(x)) = R(x) \cdot \left(1 + rac{\phi^{(Q)}(x)}{\sqrt{R(x)}}
ight) = R(x) + \sqrt{R(x)} \cdot \phi^{(Q)}(x)$

Now we have

$$\begin{split} D(P||Q) &= \sum_{x} P(x) \cdot \log \frac{P(x)}{Q(x)} = \sum_{x} P(x) \cdot \left(\log \frac{P(x)}{R(x)} - \log \frac{Q(x)}{R(x)}\right) \\ &= \sum_{x} P(x) \cdot \left[\log \left(1 + f(x)\right) - \log \left(1 + g(x)\right)\right] \\ &= \sum_{x} \left[R(x) + \underbrace{R(x) \cdot f(x)}_{O(\epsilon)}\right] \cdot \left[\underbrace{f(x)}_{O(\epsilon)} - \underbrace{\frac{1}{2}f^{2}(x)}_{O(\epsilon^{2})} - \underbrace{g(x)}_{O(\epsilon)} + \underbrace{\frac{1}{2}g^{2}(x)}_{O(\epsilon^{2})} + O(\epsilon^{3})\right] \\ &= \underbrace{\sum_{x} R(x)(f(x) - g(x))}_{0} \\ &+ \underbrace{\sum_{x} R(x) \left(-\frac{1}{2}f^{2}(x) + \frac{1}{2}g^{2}(x) + f(x) \cdot (f(x) - g(x))\right)}_{0} + o(\epsilon^{2}) \\ &= \frac{1}{2}\mathbb{E}_{x \sim R}\left[(f(x) - g(x))^{2}\right] + o(\epsilon^{2}) \end{split}$$

CLT and Asymptotic Normality

Recall Large Deviations / Sanov Theorem

$$\mathbb{P}_{\mathsf{x}_{1}^{n} \sim \text{i.i.d.}P} \left(\mathsf{x}_{1}^{n} \in T_{Q} \right) \doteq e^{-nD(Q||P)}$$

= $e^{-n \cdot \frac{1}{2} \|\phi^{(Q)} - \phi^{(P)}\|^{2} + o(\epsilon^{2})}$

- The empirical distribution $\check{P}_{\sf x}(\cdot;{\sf x}_1^n)=Q\,$ is random, corresponding $\phi^{(Q)}$ is also random
- Gaussian distributed around the ensemble distribution $P \leftrightarrow \phi^{(P)}$
- With approximate a Gaussian distribution, white, with variance 1/n per dimension.

Local parameter estimate: empirical average \propto estimate $\hat{ heta}_{
m ML}$

- CLT: if f(x) has zero-mean and unit variance w.r.t. R_{i} ,
- Asymptotic efficiency of ML estimate:

 $\sqrt{n} \cdot (\hat{ heta}_{ ext{ML}} - heta) ~
ightarrow ~N(0, rac{1}{\mathcal{I}(heta)})$

• The business between a finite alphabet and a continuous alphabet.

6. Example: Akaike Information Criterion

Akaike information criterion - Wikipedia The Akaike information criterion (AIC) is an estimator of prediction error and thereby relative quality of statistical models for a given set of data. Given a collection of models W https://en.wikipedia.org/wiki/Akaike_information_criterion

 $rac{1}{\sqrt{n}}\sum_i f(\mathsf{x}_i) o N(0,1)$

- Consider a sequence of nested parameterized families $\mathcal{P}_1 \subset \mathcal{P}_2 \subset \ldots \subset \mathcal{P}_m$
- with increasing dimensionality of parameters

$$\mathcal{P}_k = \{P_{\mathsf{x}}(\cdot; heta^k), \; heta^k \in \mathbb{R}^k\}, \; \; \; k = 1, \dots, m$$

- Observe $\mathsf{x}_1^n = x_1^n$, solve for each family

$$\hat{P}^k_{ ext{ML}} = rg\min_{\hat{P}\in\mathcal{P}_k} \ D(\check{P}(\cdot;\mathsf{x}^n_1)||\hat{P})$$

- Larger k, better matching,
- Which k to choose? How to penalize bigger families? Avoid over-fitting.

Akaike's observation:

We really want to minimize

$$D(P||\hat{P})$$
but observe $D(\check{P}||\hat{P}).$

Locally:

1. All ML estimates are just projections

$$\hat{P}^k_{ ext{ML}} \leftrightarrow \pi_k(\check{\phi})$$

2. What to compare?

 $\|\pi_2(\check{\phi}) - \check{\phi}\| < \|\pi_1(\check{\phi}) - \check{\phi}\|$ but how about $\|\pi_2(\check{\phi}) - \phi\| \ge \|\pi_1(\check{\phi}) - \phi\|$

3. $\check{\phi}-\phi$ is asymptotically normal with variance 1/n per dimension.

Given $\|\check{\phi} - \pi_k(\check{\phi})\|^2$, need to

- subtract the average power of $(\check{\phi}-\phi)\perp \mathcal{P}$, $~\sim rac{1}{n}(|\mathcal{X}|-k)$
- add the average power of $(\check{\phi}-\phi)\parallel \mathcal{P}$, $~\sim rac{1}{n}k$

 $\min_k \; \|\check{\phi} - \pi_k(\check{\phi})\|^2 + rac{k}{n} - rac{|\mathcal{X}| - k}{n} \; \longrightarrow \; \min_k \; D(\check{P}||\hat{P}^k_{ ext{ML}}) + rac{k}{n}$

7. Projections and Inner Products

What does the direction of information vectors represent?

- Consider $\mathsf{x}_1,\ldots,\mathsf{x}_n\sim$ i.i.d. R_x ,
- but we observe empirical distribution \check{P}

$$\check{\phi}(x)=rac{\check{P}(x)-R(x)}{\sqrt{R(x)}},\quadorall x$$

- We would like to evaluate the empirical average of a function $f:\mathcal{X}\mapsto\mathbb{R}$
- w.l.o.g. assume $\mathbb{E}_{\mathsf{x}\sim R}[f(\mathsf{x})]=0$
- Information vector $\psi \leftrightarrow f$, with $\psi(x) = \sqrt{R(x)} \cdot f(x), \;\; orall x$

The empirical average

$$egin{aligned} &rac{1}{n}\sum_{i=1}^n f(x_i) = \mathbb{E}_{\mathsf{x}\sim\check{P}}[f(\mathsf{x})] = \sum_x\check{P}(x)\cdot f(x) \ &= \sum_x \left(R(x) + \sqrt{R(x)}\cdot\check{\phi}(x)
ight)\cdot rac{\psi(x)}{\sqrt{R(x)}} \ &= \langle\check{\phi},\psi
angle \end{aligned}$$

Back to Binary Hypothesis Testing

• Recall linear decision region

$$rac{1}{n}\sum_{i=1}^n \ \log f(x_i) = \mathbb{E}_{\mathsf{x}\sim\check{P}}[f(\mathsf{x})] \ \stackrel{H_1}{\underset{\hat{H}_0}{\gtrsim}} \gamma$$

and the optimal

$$f(x) = \log rac{P_1(x)}{P_0(x)}, \quad orall x$$

• A binary query corresponds to a vector

$$egin{aligned} \psi & ext{ &= } \phi^{(P_1)} - \phi^{(P_2)} \ &= rac{(P_1(x) - R(x)) - (P_0(x) - R(x)))}{\sqrt{R(x)}} \ &= \sqrt{R(x)} \cdot \left[\left(rac{P_1(x)}{R(x)} - 1
ight) - \left(rac{P_0(x)}{R(x)} - 1
ight)
ight] \ &pprox \sqrt{R(x)} \cdot \left[\log \left(rac{P_1(x)}{R(x)}
ight) - \log \left(rac{P_0(x)}{R(x)}
ight)
ight] \ &= \sqrt{R(x)} \cdot f(x) = \phi^{(f)} \end{aligned}$$

for the log-likelihood function

- + LLR = project observed empirical distribution $\check{\phi}$ on ψ
- length = $D(P_1||P_0)$, maximum one-sided error exponent

- What if we use a different statistic $f'
eq \log rac{P_1}{P_0}$?

$$ilde{P}_1 riangleq rgmin_{Q:\mathbb{E}_Q[f']=\mathbb{E}_{P_1}[f']} D(Q||P_0)$$

Maximum one-sided error exponent reduced by factor of

$$\left|\cos\left(\angle(\phi^{(f)},\phi^{(f')})\right)\right|^2$$

• Measures how much is f'(x) useful in answering a question about f !!!

8. Information Vector for Joint Distributions, CDM

- $P_{\rm xy}$ with reference $R_{\rm xy}$
- Choose $R_{\mathsf{x}\mathsf{y}} = P_{\mathsf{x}} \cdot P_{\mathsf{y}}$, independent with the same marginals

Definition: Canonical Dependence Matrix (CDM) $B \in \mathbb{R}^{\mathcal{X} imes \mathcal{Y}}$

$$B(x,y) riangleq rac{P_{\mathsf{x}\mathsf{y}}(x,y) - P_{\mathsf{x}}(x)P_{\mathsf{y}}(y)}{\sqrt{P_{\mathsf{x}}(x)P_{\mathsf{y}}(y)}}, \quad (x,y) \in \mathcal{X} imes \mathcal{Y}$$

• Inherited property

 $rac{1}{2} \|B\|^2 pprox D(P_{\mathsf{x}\mathsf{y}} \|P_{\mathsf{x}}P_{\mathsf{y}}) = I(\mathsf{x};\mathsf{y})$

- x, y have symmetric positions
- · Describes how the two random variables are dependent
- Can be viewed as a channel

- $W=P_{\mathbf{y}|\mathbf{x}}$ defines a channel
- By definition, if input is $R_{\rm x}=P_{\rm x}$, the output is $R_{\rm y}=P_{\rm y}$
- If we change input to be $\ Q_{\mathsf{x}} \leftrightarrow \underline{\phi} \in \mathbb{R}^{\mathcal{X}}$ $Q_{\mathsf{x}}(x) = R_{\mathsf{x}}(x) + \sqrt{R_{\mathsf{x}}(x)} \cdot \phi(x), \quad x \in \mathcal{X}$

The output would be $\ \ Q_{\mathsf{y}} \leftrightarrow \underline{\psi} \in \mathbb{R}^{\mathcal{Y}}$,

$$\begin{split} Q_{\mathsf{y}}(y) &= \sum_{x} P_{\mathsf{y}|\mathsf{x}}(y|x) \cdot Q_{\mathsf{x}}(x) \\ &= \sum_{x} P_{\mathsf{y}|\mathsf{x}}(y|x) \cdot R_{\mathsf{x}}(x) \cdot \left(1 + \frac{\phi(x)}{\sqrt{R_{\mathsf{x}}(x)}}\right) \\ &= R_{\mathsf{y}}(y) + \sum_{x} P_{\mathsf{x}\mathsf{y}}(x,y) \cdot \frac{\phi(x)}{\sqrt{R_{\mathsf{x}}(x)}} \\ &= R_{\mathsf{y}}(y) + \sum_{x} \left(P_{\mathsf{x}\mathsf{y}}(x,y) - P_{\mathsf{x}}(x)P_{\mathsf{y}}(y)\right) \cdot \frac{\phi(x)}{\sqrt{R_{\mathsf{x}}(x)}} \\ &= R_{\mathsf{y}}(y) + \sqrt{R_{\mathsf{y}}(y)} \cdot \left(\sum_{x} \underbrace{\frac{P_{\mathsf{x}\mathsf{y}}(x,y) - P_{\mathsf{x}}(x)P_{\mathsf{y}}(y)}{\sqrt{R_{\mathsf{x}}(x)}\sqrt{R_{\mathsf{y}}(y)}} \cdot \phi(x)\right) \end{split}$$

Theorem: B- matrix as a map

$$\underline{\psi} = B \cdot \underline{\phi}$$

Map of functions

Suppose

Define $\underline{\psi}=B\cdot \underline{\phi}$, what function operation is this?

$$\begin{split} g(y) &= \frac{1}{\sqrt{R_{\mathsf{y}}(y)}} \cdot \psi(y) = \frac{1}{\sqrt{R_{\mathsf{y}}(y)}} \cdot \left(\sum_{x} B(x, y) \cdot \phi(x)\right) \\ &= \frac{1}{\sqrt{R_{\mathsf{y}}(y)}} \cdot \left(\sum_{x} \frac{P_{\mathsf{xy}}(x, y) - P_{\mathsf{x}}(x)P_{\mathsf{y}}(y)}{\sqrt{P_{\mathsf{x}}(x)P_{\mathsf{y}}(y)}} \cdot \phi(x)\right) \\ &= \sum_{x} \frac{P_{\mathsf{xy}}(x, y)}{P_{\mathsf{y}}(y)} \cdot \frac{\phi(x)}{\sqrt{R_{\mathsf{x}}}(x)} \\ &= \mathbb{E}[f(\mathsf{x})|\mathsf{y} = y], \quad \forall y \end{split}$$

Similarly $f(x) = \mathbb{E}[g(\mathsf{y})|\mathsf{x} = x], \quad orall x$

B matrix is the conditional expectation operator.

Part III: Machine Learning

9. Example: Conjugator Prior Family

Definition: Given an observation model $P_{\mathbf{y}|\mathbf{x}}$, a parameterized family of prior distribution

 $\mathcal{P}=\{P_{\mathsf{x}}(\cdot; heta), heta\in\mathbb{R}\}$ is called the conjugate prior family if for any value of y, $P_{\mathsf{x}|\mathsf{y}}(\cdot|y)\in\mathcal{P}.$

- Update knowledge turned into update parameters
- Bernoulli/Beta; Categorical/ Dirichlet, Poisson/Gamma, Normal (fix σ^2)/ Normal

Diaconis, Ylvisker (1979)

Conjugate Priors for Exponential Families Let \$X\$ be a random vector distributed according to an exponential family with natural parameter \$\theta \in \Theta\$. We characterize conjugate prior measures on \$\Theta\$ through the property of

https://projecteuclid.org/journals/annals-of-statistics/volume-7/i ssue-2/Conjugate-Priors-for-Exponential-Families/10.1214/aos/1176 344611.full

have a build decreased builds and a state of the state of	
NINGTON XIA ON XINGTON ZORNO	380
Chilar ado, for events of laber discovery net and laber discovery recordings.	
ADEL DEPONENTS AND AND AND MONTANAM	536
Engency densis minimum denses belowers for southly assimutible and sourcesd	
ARMA models Content Vision on Revenue N. London	365
On concisionary and country for sheed among represent in high dimensions	
Qual La, Zacia Zaso and Im 3, Lor	340
Repelations and the small hall method it Sparse tourney	
GUILLACKE LECTE AND SHORE A MORELAUX	411
Cauncius and boot-imp approximations for high-dimensional U statistics and their	
appleations. Xyanti CHX	440
Miscine inference with a randomized suppose	
ADDRESS TAN AND DESCRIPTION	100
Multiscale Mind source separation MOREL BERR, CRIMIN RECEIPT AND AND AND MINA.	718
Sharp-marke inequalities for Loant Squares extension in shape sectional	
represent Preset C. Bellief	740
Oracle inequalities for spane additive quantic regression in reproducing homed Halbort	
space	761
ELONM for spane loaning. Non-baccon control of algorithmic complexity and	
statistical arear	804
On Baperian index periodes for sequential resource allocations	MQ.
Testing independence with high disconcional cound and counder	
teach and beauties and the concentration of the states	

If the observation model is an exponential family

 $P_{\mathsf{y}|\mathsf{x}}(y|x) = \exp(x \cdot t(y) - lpha(x))$

then the conjugate prior $P_{\rm x}(\cdot; heta)$ must satisfy that for all heta, evaluated w.r.t. $P_{\rm x}(\cdot; heta)\cdot P_{
m y|x}$,

 $\mathbb{E}[\mathbb{E}[t(\mathsf{y})|\mathsf{x}]|\mathsf{y}] = a \cdot t(\mathsf{y}) + b$, for some constants a, b.

The geometric view:

- 1. Observe a sequence $\check{y}_1,\ldots,\check{y}_n$ with empirical distribution $\check{P}_{\mathsf{y}}=Q_{\mathsf{y}}\leftrightarrow \underline{\psi}$
- 2. Symmetric story, the posterior

$$P_{\mathsf{x}|\mathsf{y}_1^n}(\cdot|\check{y}_1^n) = Q_\mathsf{x} \leftrightarrow \underline{\phi} = B^T \cdot \underline{\psi}$$

3. Conjugate prior: regardless of $\underline{\psi}$, the posterior is always in a 1-D family : $\underline{\phi}$ remains in the same direction.

B is a rank-1 matrix: $B = \sigma \cdot \underline{\psi} \cdot \underline{\phi}^T$

$$B \cdot B^T \cdot \underline{\psi} = \sigma^2 \cdot \underline{\psi} \quad \Leftrightarrow \quad \mathbb{E}[\mathbb{E}[t(\mathsf{y})|\mathsf{x}]|\mathsf{y}] = a \cdot t(\mathsf{y})$$

10. The multi-dimensional nature of dependence

$$B = \sum_i \sigma_i \cdot \underline{u}_i \cdot \underline{v}_i^T$$

Dependence over multiple modes

$$I(\mathsf{x};\mathsf{y}) pprox rac{1}{2} \cdot \sum_i \sigma_i^2$$

- Example: broadcast channel,
 - *I*(x; y) > *I*(x; z) does not mean we cannot transmit a private message x → z that is not decodable by y.
 - More capable (EI-Gammal 79') : B_{xy} dominates B_{xz} in every mode.

 $\|B_{\mathsf{x}\mathsf{y}} \cdot \underline{\phi}_{\mathsf{x}}\|^2 \ge \|B_{\mathsf{x}\mathsf{z}} \cdot \underline{\phi}_{\mathsf{x}}\|^2, \quad orall \underline{\phi}_{\mathsf{x}}$

- Example: Strong DPI
 - All singular values of *B* are less than or equal to 1.

 $\|B_{\mathsf{x}\mathsf{y}}\cdot \underline{\phi}_{\mathsf{x}}\|^2 \leq \|\underline{\phi}_{\mathsf{x}}\|^2, \quad orall \underline{\phi}_{\mathsf{x}} \quad \Leftrightarrow \quad D(P_{\mathsf{y}}||Q_{\mathsf{y}}) \leq D(P_{\mathsf{x}}||Q_{\mathsf{x}}),$

- But the contraction is really not a 1-D scaling issue.
- Literature of slightly different formulations of SDPI.

• **Example**: Hermite Polynomial for Additive Gaussian Noise Channel

11. Renyi Correlation, CCA

Definition: Hirschfeld-Gebelein-Renyi Maximal correlation:

Given
$$P_{\mathsf{x}\mathsf{y}}$$
: $ho riangleq \max_{f,g} ~ \mathbb{E}_{\mathsf{x},\mathsf{y}\sim P_{\mathsf{x}\mathsf{y}}} \left[f(\mathsf{x}) \cdot g(\mathsf{y})
ight]$

where f,g satisfies $\mathbb{E}[f(\mathsf{x})]=\mathbb{E}[g(\mathsf{y})]=0,\;\mathbb{E}[f^2(\mathsf{x})]=\mathbb{E}[g^2(\mathsf{y})]=1$

- Defined as a measure of level of dependence 1959.
- Generalizes to multiple pairs of functions $f_1,\ldots,f_k;g_1,\ldots,g_k.$
- Canonical Dependence Analysis, Correspondence Analysis.

12. Operations in Neural Networks

- Classification $y \in \{1,\ldots,|\mathcal{Y}|\}.$
- Last layer input: $f_1(x),\ldots,f_k(x)$,
- Last layer weights: $g_i(y), i=1,\ldots,k; y\in \mathcal{Y}$,
- Softmax activation:

$$\hat{P}_{\mathrm{y}|\mathrm{x}}^{(f,g)}(y|x) = rac{\exp\left[\sum_{i=1}^k f_i(x) \cdot g_i(y) + b(y)
ight]}{\sum_{y'} \exp\left[\sum_{i=1}^k f_i(x) \cdot g_i(y') + b(y')
ight]}, \hspace{0.2cm} y \in \mathcal{Y}$$

• Cross-Entropy Loss, ML for discriminative model.

$$\arg\min_{f,g} D(\check{P}_{\mathsf{x}} \cdot \check{P}_{\mathsf{y}|\mathsf{x}} || \check{P}_{\mathsf{x}} \cdot \hat{P}_{\mathsf{y}|\mathsf{x}}^{(f,g)})$$

```
model = Sequential()
model.add(...)
model.add(Dense(yCard, activation='softmax', input_dim=k))
sgd = SGD(4, decay=1e-2, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)
```

- In the local setup
 - 1. Reference

$$egin{aligned} R_{\mathsf{x}}(x) &= \check{P}_{\mathsf{x}}(x), \quad orall x \ R_{\mathsf{y}}(y) \propto e^{b(y)}, \quad orall y \ \hat{P}_{\mathsf{y}|\mathsf{x}}^{(f,g)}(y|x) &= R_{\mathsf{y}}(y) \cdot rac{\exp\left[\sum_{i=1}^{k} f_{i}(x) \cdot g_{i}(y)
ight]}{\sum_{y'} \exp\left[\sum_{i=1}^{k} f_{i}(x) \cdot g_{i}(y')
ight]}, \;\; y \in \mathcal{Y} \end{aligned}$$

2. Learned model

$$egin{aligned} \hat{P}_{\mathsf{y}|\mathsf{x}}^{(f,g)} &\longrightarrow R_\mathsf{y}, \hat{B}^{(f,g)}: \ &\hat{B}^{(f,g)}(x,y) = \sqrt{R_\mathsf{x}(x)R_\mathsf{y}(y)} \cdot \left(\sum_{i=1}^k f_i(x) \cdot g_i(y)
ight) \quad orall x,y \end{aligned}$$

3. Optimization

 $rg\min_{f,g} \|\check{B} - \hat{B}^{(f,g)}\|^2$

4. Solution: SVD

5. How was this numerically solved?

BackProp:

- Fix $f: g(y) \leftarrow \mathbb{E}[f(\mathsf{x})|\mathsf{y}=y], \ \forall y$, equivalent to $\ \underline{\psi}^{(g)} \leftarrow B \cdot \underline{\phi}^{(f)}$
- Fix $g: \ f(x) \leftarrow \mathbb{E}[g(\mathsf{y})|\mathsf{x}=x], \ \forall x, \ \text{ equivalent to } \ \underline{\phi}^{(f)} \leftarrow B^T \cdot \underline{\psi}^{(g)}$

13. What is this good for?

- It is good to know that NNs are SVD solvers;
- H-score implementation

$$\begin{split} H(\underline{f},\underline{g}) &= \|\check{B} - \hat{B}^{(f,g)}\|^2 \triangleq \mathbb{E}_{\mathsf{x},\mathsf{y} \sim \check{P}_{\mathsf{x}\mathsf{y}}} \left[\underline{f}^T(\mathsf{x}) \cdot \underline{g}(\mathsf{y}) \right] - \frac{1}{2} \mathrm{trace} \left(\mathrm{cov}(\underline{f}) \cdot \mathrm{cov}(\underline{g}) \right) \\ H(\underline{f}) &= H(\underline{f},\underline{g}^*) \triangleq \mathbb{E}_{\mathsf{y} \sim p_\mathsf{y}} \left[\mathbb{E}[\underline{f}(\mathsf{x})|\mathsf{y} = y]^T \cdot \mathrm{cov}(\underline{f})^{-1} \cdot \mathbb{E}[\underline{f}(\mathsf{x})|\mathsf{y} = y] \right] \end{split}$$

- Allows aggressive dimension reduction
- Direct operation on the feature functions
- Choice of reference distribution $R_{\rm xy}$ and iterative algorithms, convergence analysis.
- Knowledge subspace: $\mathrm{span}(f_1,\ldots,f_k)$. Interpretation and evaluation of learning quality.
- Multi-variate, multi-modal, multi-task problems.