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1. Background

Public key / private key cryptography



Cryptographic Building Blocks

Confidentialit

Symmetric

Stream ciphers:
one-time pad,
RC4

Block ciphers:
DES, AES

Hash functions:
MD5, SHA-1,
SHA-2

Message auth.

codes:
HMAC

Pseudo-random
functions:

HMAC, HKDF

Asyl € stric

Confidentiality

Public key Digital Key exchange:
encryption: signatures: RSA, (EC)Diffie—
RSA RSA, (EC)DSA Hellman



Public Key Encryption

Generates a
private key sk and
a public key pk.

Encrypt a message
m using public key
pk to obtain
ciphertext c.

Decrypt a
DIV o SN & M ciphertext ¢ using
private key sk to
obtain message m.



Public Key Encryption: Security

Security goal: indistinquishability under adaptive
chosen ciphertext attack (IND-CCA2)

Adaptive chosen . . : e
ciphertext attack Indistinguishability

» adversary can  the adversary cannot
adaptively obtain distinguish which of
decryptions of any two messages m, or
ciphertexts of his m, of its choosing was

choosing encrypted



RSA public key encryption

Key generation Encryption
1. Bob picks two large To encrypt a message to
primes p and q and send to Bob:
computes n = pq 1. Alice encodes the
2. Bob picks a value e message as a number
and CQmputeS min1...n
d = e mod ¢(n) 2. Alice computes ¢ = me
3. Public key: (n, e) mod n
4. Secret key: (n, d) 3. Alice sends the

ciphertext c to Bob

[Rivest, Shamir, Adleman, 1978]



RSA public key encryption

Decryption
To decrypt a ciphertext c: Decryption works
1. Bob computes because
m = c? mod n ecd=me9=m! =m mod
2. Bob decodes the N
number m into the .Since ed = 1 mod ¢(n)

message

[Rivest, Shamir, Adleman, 1978]



Digital Signatures

Generates a
signing key sk and
a verification key
vk.

_ Sign a message m
11810161 1000 | using signing key
5 0 sk to obtain a

signature o.

Check validity of
signature o of a
message m under
verification key vk
and output 0 or 1.




Digital Signatures: Security

Security goal: existential unforgeability under
chosen message attack (EUCMA).

Chosen message S ENE]
attack unforgeability

 adversary can * hard to construct a
adaptively obtain new valid
signatures for any signature/message
messages of his pair (n,ote: message
choosing doesn’t have to be

“meaningful”)
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Diffie—Hellman key exchange

Fixed public parameters: generator g of a group of prime order q

Pick x randomly from 1...q Pick y randomly from 1...q
Compute X = gX Compute Y = g

Bob

—

Compute k = Yx= gyx = g Compute k = Xy = g

[Diffie, Hellman, 1976]

11



Signed Diffie—Hellman key exchange

Generate signature key Generate signature key
pair (vka, ska) Obtain authentic copy of Vk’i pair (vkg, skg)

Obtain authentic copy of vkg

<IIIIIIIIIIIIIIIIIII EEEEEEEDNR

Fixed public parameters: generator g of a group of prime order q

Pick x randomly from 1...q Pick y randomly from 1...q
Compute X = g¥ Compute Y = gY

X, "Alice"

Y, "Bob", Sign(skg, "Bob" | "Alice" | X | Y)

Sign(sky, "Alice” | "Bob" | X | Y)

Lookup vKg Lookup vkp
Verify signature using vkg Verify signature using vka
Compute k = YX Compute k = Xv

| means concatenation 12



Key Exchange: Security

Security goal: indistinquishability of session keys

under various attack scenarios.

: Indistinguishability
Attack scenarios of session key

- adversary can control  hard to distinguish the
communications, real session key from

* learn session keys of random string of the
other sessions, same length

* learn parties’ long-term
keys (“forward secrecy”)

* learn parties’ random
coins 13



1. Background

Why post-quantum?
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2021 IEEE North American School of Information Theory

Welcome

Please check out this brief Welcome video with a few words about the school and logistics from the organizers.

Updates

Tutorials including Q&A will be synchronous events, without recording.

We would like to encourage interactions between tutorial speakers and (student) attendees, in the spirit of the School with and for students, and similar to the in-person
NASIT events. Therefore we will also not record sessions.

Questions can be asked during the tutorials, and tutorial moderators will help with asking and addressing questions that have been posted in the chat.

About the School
The 2021 IEEE North American School of Information Theory will be held Monday, June 21 through Friday, June 25 2021.
This will be the 13th Annual North American School of Information Theory and follows a series of events designed to provide graduate students with opportunities to:
» Learn from senior lecturers in the field who will present long-format tutorials;
= Participate in a stimulating and inviting forum of scientists;
= Present their own work for feedback and potential collaboration;
= Deepen their connections with the community.

Program

The school will be a virtual event held over five days and will consists of
= Senior lecturers presenting long-format (2 1/2 hour) tutorials;
» Students presenting their own work in poster sessions.

Participation
The tutorials will be delivered in zoom meetings and the poster sessions will take place in virtual poster rooms using the web-conferencing space Gather.town.

Links to these events will be sent out to registered participants on June 20, 2021.

Lecturers
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@ Overview

Main origin

Elements

Reload to view details

Console

[+
* S » @
o4 R2 B : X

Sources Security X »

Security overview
]
This page is secure (valid HTTPS).

B  Certificate - valid and trusted

The connection to this site is using a valid, trusted server
certificate issued by R3.

Connection - secure connection settings

The connection to this site is encrypted and authenticated using
TLS 1.2, ECDHE_RSA with P-256, and AES_256_GCM.

- all served securely

All resources on thisS page &
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Cryptographic building blocks

Connection - secure connection settings

The connection to this site is encrypted and authenticated using
TLS 1.2,|ECDHE_RSA with P-256,iand| AES_128_GCM.|

Q
Public-key Ot (;/ Symmetric
cryptography OULET cryptography
M re.

Based on

difficulty of T
factoring large Elliptic curve

numbers RSA signatures Diffie—Hellman

AES GCM
integrity

encryption

— not quantum key exchange
resistant!

17



What can go wrong

* Mathematical advances break cryptographic
assumptions

* Good cryptography is used improperly in
applications and protocols

*Bugs in how good cryptography is implemented in
software & hardware



Quantum computing

Represent and process
information using
quantum mechanics

"Classical" computers handle
information as bits:

0 and 1

Quantum computers handle
information as qubits:
* Any "superposition” of 0 and 1

Processing information in
superposition can
dramatically speed some
computations

» Chemical reaction
simulations

» Optimization problems
* Arithmetic

But not magic

* Doesn't dramatically speed
up all computations
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Welcome to the Future
Quantum Computing for the Real World Today
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INSTITUTE FOR QUANTUM COMPUTING

Institute for Quantum Institute for Quantum Computing » News » 2017 » September »

Computing home

ot 06 ~Scalable quantum computers within reach

Avalilable positions

Research R Quantum machine learning and artificial intelligence, quantum-safe cryptography, and
simulation of quantum systems all rely on the power of quantum computing.

Programs >
A team of researchers at the Institute for Quantum Computing (IQC) have taken a step closer

Outreach > to realizing the powerful possibilities of a universal quantum computer. The Laboratory for
Digital Quantum Matter, led by faculty member Matteo Mariantoni, is developing

News >

technologies for extensible quantum computing architectures based on superconducting
Events quantum devices.
Blog

Superconducting quantum circuits have close to zero electrical resistance and offer enhanced
efficiency and processing power compared to traditional electrical circuits. Mariantoni’s
research group uses nanofabrication tools and semiconductor technology to fabricate on-
chip superconducting quantum circuits which operate at microwave frequencies.

INFORMATION FOR

Researchers

Students The source of the quantum information in the superconducting quantum circuit is the qubit.
The qubit is similar to an electronic circuit found in a classical computer that is characterized

Visitors by two states, 0 or 1. However, the qubit can also be prepared in superposition states — both

Media 0 and 1 at the same time — made possible by quantum mechanics.

Alumni and friends Quantum mechanical states are fragile and interact easily with their environment. As a

result, qubits cannot store information for very long times; the interaction with the
environment in the circuit eventually causes the bit to decay, transitioning from one state to
another in a random, unwanted fashion. These errors must be mitigated to implement a
universal quantum computer.
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Join us at the leading edge of opportunity

Quantum computing takes a giant leap forward from today's technology—
one that will forever alter our economic, industrial, academic, and societal
landscape. In just hours or days, a quantum computer can solve complex

problems that would otherwise take billions of years for classical computing
to solve. This has massive implications for research in healthcare, energy,

environmental systems, smart materials, and more. The quantum economy is
coming. And Microsoft envisions a future where customers use Azure for
both classical and quantum computing.

Stay updated >




Ryancare attacked from left and right

The IS up against the wall in Mosul
.
Econom l St Taiwan and the one-China fiction

Is there a bubble in the markets?

Gartner Hype Cycle for Emerging Technologies, 2017
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Quantum threat to information security

Large-scale
general-purpose  Need to migrate
quantum encryption to When should you
computers could gquantum- start the
break some resistant process?
encryption algorithms

schemes



When will a large-scale
quantum computer be

built?

‘| estimate a 1/7
chance of breakin
RSA-2048 by 202

and a 1/2 chance by
2031.7

— Michele Mosca,
University of Waterloo
https://eprint.iacr.org/2015/1075

http://qurope.eu/system/files/u7/93056 Quantum%20Manifesto  WEB.pdf
https://globalriskinstitute.org/publications/quantum-threat-timeline/

.....

A New Era of Technology May 2016

Quantum Technologies Timeline

Quantum Threat Timeline

Authors: Dr. Michele Mosca, co-founder; President and CEO, evolutionQ Inc.
Dr. Marco Piani, Senior Researcher Analyst, evolutionQ Inc.

EXPERT OPINIONS ON THE
LIKELIHOOD OF A
SIGNIFICANT QUANTUM
THREAT TO PUBLIC-KEY
CYBERSECURITY

AS FUNCTION OF TIME

<30% ®mM~50% m>70% MWM>95% WM>99%

5 YEARS 12 8 2
15 YEARS 3 8 7 p p
20 YEARS 2 10 5 4 1
30 YEARS 5 8 3 6

Numbers reflect how many experts (out of 22) assigned a certain probability range.
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Post-quantum cryptography

a.k.a. quantum-resistant algorithms

Hash-based

Cryptography believed to be & symmetric
resistant to attacks by quantum
computers

Uses only classical (non-quantum .
operationys to impler%ent A ) Code-based

Not as well-studied as current

Y SINVEIEE
quadratic

Lattice-
based

encryption Elliptic
 Less confident in its security curve
- More implementation tradeoffs Isogenies

25



Fast computation

Confidence in quantum-resistance

Small communication

26



Quantum key distribution

Uses quantum mechanics to
protect information

Satellite
¥ with Reflectors

Doesn't require a full
quantum computer

Uplink

Downlink

Downlink
into FOV of
receiver

But does require new
_communlcatlons
Infrastructure and hardware

=> Not the subject of this
talk



2. Learning with errors problems



Solving systems of linear equations

secret
7xX4 4x1 7Tx1
Z13 Z13 Zl3

Linear system problem: given blue, find red

29



Solving systems of linear equations

secret
7xX4 4x1 7Tx1
Z13 Z13 Z13

Linear system problem: given blue, find red 30



Learning with errors problem

[Regev 2005]

random secret small noise
7xX4 4x1 Tx1
Zl3 Zl3 Z13

7x1
ZHB

31



Learning with errors problem

[Regev 2005]

random secret small noise
7xX4 4x1 Tx1 7Tx1
Z13 Z13 Z13 Z13

l x I + =

Search LWE problem: given blue, find red

32



Search LWE problem

Let n, m, and ¢ be positive integers. Let xs and Y. be distributions over Z.

Let s & x7. Let a; il U(Zy), e il Xe, and set b; < (a;,s) +e; mod g, for
1=1,...,m.

m

The search LWE problem for (n,m,q, xs, Xe) is to find s given (a;, b;)",.

In particular, for algorithm A, define the advantage
lwe $ n $ n $
Adv (A) = Pr [S%Xs;ai%u(zq%@iFXe;

n,m,q,Xs,Xe
bi — <a’i7 S’i> + e mod q - A((aia b”&)gl) — S)} .

[Regev STOC 2005]



Decision learning with errors problem

random secret small noise looks random
7xX4 4x1 Tx1 7Tx1
Zl3 Z13 Z13 Z13

4
7
X + =
2
11
S
12
8

Decision LWE problem: given blue, distinguish green from random

34



Decision LWE problem

Let n and g be positive integers. Let xs and x. be distributions over Z. Let

s & X=. Define the following two oracles:

e O, s a & U(Zy), e & Xe; return (a, (a,s) + e mod q).

e U: a iZ/l(Zg‘), Ty U(Zy); return (a,u).

The decision LWE problem for (n,q,xs,X.) is to distinguish O, 5 from
U.

In particular, for algorithm A, define the advantage

Adv™  (A) = |Pr(s & 77 : A% () = 1) — Pr(4AY() = 1)

n7q7XS 7X€



Search-decision equivalence

*Easy fact: If the search LWE problem is easy,
then the decision LWE problem is easy.

*Fact: If the decision LWE problem is easy, then
the search LWE problem is easy.
* Requires nq calls to decision oracle

* Intuition: test each value for the first component of the
secret, then move on to the next one, and so on.

[Regev STOC 2005]



Choice of error distribution

» Usually a discrete Gaussian distribution of width a < 1
for error rate s = aq

* Define the Gaussian function
ps(x) = exp(—||x||*/s*)

* The continuous Gaussian distribution has probability
density function

f(x) = ps(x)/ . ps(z)dz = ps(x)/s"



Short secrets

* [he secret distribution X s was originally taken to
be the uniform distribution

Short secrets: use s = Xe

* There's a tight reduction showing that LWE with
short secrets is hard if LWE with uniform secrets is
hard.

[Applebaum et al., CRYPTO 2009]



Toy example versus real-world example

640X 8
Z215

640 x 8 x 15 bits = 9.4 KiB



Ring learning with errors problem

[Lyubashevsky, Peikert, Regev 2010]

random
7xX4
Z13

Each row is the cyclic
shift of the row above

40



Ring learning with errors problem

[Lyubashevsky, Peikert, Regev 2010]

random
7xX4
Z13

Each row is the cyclic
shift of the row above

with a special wrapping rule:

x wraps to —x mod 13.

41



Ring learning with errors problem

[Lyubashevsky, Peikert, Regev 2010]

random
7xX4
Z13

_ Each row is the cyclic

shift of the row above

with a special wrapping rule:
X wraps to —x mod 13.

So | only need to tell you the first row.

42



Ring learning with errors problem

[Lyubashevsky, Peikert, Regev 2010]
Zys[z]/(z* + 1)

random

secret

+ 0-1x+ 12+ 1X3 small noise

43



Ring learning with errors problem

[Lyubashevsky, Peikert, Regev 2010]
Zys[z]/(z* + 1)

random

secret

small noise

X

Search ring-LWE problem: given blue, find red

44



Search ring-LWE problem

Let R =7Z|X]/(X™ + 1), where n is a power of 2.

Let ¢ be an integer, and define R, = R/qR, i.e., R, = Z,| X]/(X"™ + 1).

Let xs and x. be distributions over R,. Let s & Ys. Let a & UR,), e il YXes
and set b + as + e.

The search ring-LWE problem for (n,q, xs,xe) is to find s given (a,b).

In particular, for algorithm A define the advantage

Adv"e (A) =Pr s & Xs; @ & U(R,);e & Xe;b < as+e: A(a,b) = s]| .

n,q;Xs;>Xe

[Lyubashesky, Peikert, Regev; EUROCRYPT 2010, JACM 2013]



Decision ring-LWE problem

Let n and g be positive integers. Let x5 and x. be distributions over R,. Let

s & Xs. Define the following two oracles:

e O,, 5 a & U(R,), e & Xe; return (a,as + e).

e U: a,u & U(R,); return (a, u).

The decision ring-LWE problem for (n,q, xs, Xe) is to distinguish O,
from U.

In particular, for algorithm A, define the advantage

Adva™e  (A) = |Pr(s & R, : A%+ () = 1) — Pr(AY() = 1)

n,q4,Xs,Xe



Module learning with errors problem

random secret small noise
- | I | |

every matrix entry is a polynomial in Z,|z|/(z"™ + 1)

Search Module-LWE problem: given blue, find red

[Langlois & Stehlé, https://eprint.iacr.org/2012/090, DCC 2015] 47



https://eprint.iacr.org/2012/090

Figure from https://eprint.iacr

Ring-LWE versus Module-LWE

Ring-LWE

.0org/2012/090.pdf

m blocks

Module-LWE

Yy

NS NN

SN

V\\\ \\\
d blocks

n=N/d


https://eprint.iacr.org/2012/090.pdf

Learning with rounding problem

random secret
x4 4x1 7x1
ZlS Zl3 ZlB
4
7

2 | Divide Z, into

11| p equal intervals

5 and map x to the
index of its interval

12
8

Search LWR problem: given blue, find red

[Banerjee, Peikert, Rosen EUROCRYPT 2012]



LWE versus LWR

LWE

* Noise comes from adding an
explicit (Gaussian) error term

(a,s) + e

https://eprint.iacr.org/2013/098, https://eprint.iacr.org/2015/769.pdf

LWR

* Noise comes from rounding to a
smaller interval

[(a,8) ],

« Shown to be as hard as LWE when
modulus/error ratio satisfies certain
bounds


https://eprint.iacr.org/2013/098
https://eprint.iacr.org/2015/769.pdf

NTRU problem

For an invertible s € Ry and a distribution x on R, define the NTRU distri-
bution N, , to be the distribution that outputs e/s € R, where e < .

Definition [NTRU decision problem|. Given independent samples a; € R,
where every sample is distributed according to either:

1. N, for some randomly chosen s € R, (fixed for all samples), or
2. the uniform distribution on R,

distinguish which is the case.

This is a “noisy quotient” problem.
[Hoffstein, Pipher, Silverman ANTS 1998]



NTRU versus LWE

NTRU: LWE:

noisy quotient noisy product
e/s as +e




Problems

Learning with errors
Module-LWE
Ring-LWE
Learning with rounding
NTRU problem

Search

Decision

With uniform secrets

With short secrets



3. Cryptography from learning with errors

Public key encryption



ElGamal public key encryption

Key generation

. ' ' e Parameters g and
A public key encryption o iffie—q

scheme built from Hellman
Diffie—Hellman key
exchange 1. Bob picks a random

integer y as his fixed
private key and
Eubllshes IS public

ey: Y = gy.



ElGamal public key encryption
Encryption Decryption

To encrypt a message to send to Bob: To recover the message from a
1. Alice encodes the message as a ciphertext:
group element m 1.  Bob computes the shared secret
2. Alice picks a random integer r from (Cp=(g)y=g"
1...9 and computes 2. Recovers
a) Ci=g m=Cy/gY

b) (@) =g
C) Co=mxg¥

3. Alice sends the ciphertext
(C, and C,) to Bob



Public key encryption from LWE
Key generation

Secret key

Public key

[Lindner, Peikert. CT-RSA 2011]



Public key encryption from LWE

Encryption

Ciphertext

Receiver's public key
w| = g m
= + =
ﬂ\/ﬂ ?

Shared secret mask

[Lindner, Peikert. CT-RSA 2011]



Public key encryption from LWE
Decryption

Ciphertext
-L 9 o, ey
2

o

AImost the same shared secret mask
as the sender used

Secret key

[Lindner, Peikert. CT-RSA 2011] 59



Approximately equal shared secret

The sender uses The receiver uses
A=s'(As+e)+e" =(s'"A+e')s
=s'As+(s'e+e") =s'As+(e's)

~S'AS ~S'AS



Lindner—Peikert public key encryption

Let n,q, x be LWE parameters.
o KeyGen(): s il x(Z™). A i Zi"". e & X(Z"). b+ As +e.
Return pk « (A,b) and sk « s.

o Enc(pk,z € {0,1}): 8 & x(Z"). & & X(ZM). B + SA +¢€. ¢ & x(2).
v < (s’,b) +¢e”. ¢ < encode(x) + v'. Return ctxt < (b’ c).

e Dec(sk, (b’,c)): v+ (b,s). Return decode(c — v).

[Lindner, Peikert; CT-RSA 2011]



Regev's public key encryption scheme

Let n,m, q,x be LWE parameters.

o KeyGen(): s i Zy. A il L5 ", e il X(Zy"). b+ As+e.

Return pk < (A,b), sk < s.

e Fnc(pk,z € {0,1}): & il {0,1}™. b’ + s’A. v/ + (s, b).
c < x - encode(v’). Return (b’,¢).

e Dec(sk,(b’,c)): v+ (b’,s). Return decode(v).

[Regev; STOC 2005]



Encode/decode

encode(r € {0,1}) < x - gJ

decode(x € Z,) < {O’ itz e |- L%J ) L%J)

1, otherwise

[Regev; STOC 2005]



Difference between Regev and Lindner-Peikert

Regev:

e Bob’s public key is s’ A where s’ il {0,1}™

e Encryption mask is (s’, b)
Lindner—Peikert:

e Bob’s public key is s’A + e’ where s’ & Ye

e Encryption mask is (s’,b) 4 ¢”

In Regev, Bob’s public key is a subset sum instance. In Lindner—Peikert, Bob’s
public key and encryption mask is just another LWE instance.



IND-CPA security of Lindner—Peikert

Indistinguishable against chosen plaintext attacks

Theorem. If the decision LWE problem is hard, then Lindner—Peikert is IND-
CPA-secure. Let n,q,x be LWE parameters. Let A be an algorithm. Then
there exist algorithms B, By such that

Advi"GeP? (A) < Advi™e (Ao By) + Advi™ (Ao By)

LP[n,q,x] n,q,X n,q,X

[Lindner, Peikert; CT-RSA 2011]



IND-CPA security of Lindner—Peikert

Game 0:

—_

_ =
= O

Game 1:

A & vz

S, e & X(Z3)

b+ As+e

s, e & X(Zy)

b« s'A + ¢

e & X(Zy)

v < s'b+¢”

co < encode(0) + v’
¢, < encode(1) + ¥’
b < U({0,1})

. return

(Aa B? Bla Cb*)

1:

2:

10:

A & vz

b < Uz

s’ e & X(Zy)

b« s’A + ¢

e & X(Zy)

7« s'b+e’

co < encode(0) + v’
c1 < encode(1) + v’
b < 1({0,1})
return

(A7 Ba Bla Cb*)

Game 2:

[b']|0] < s'[A Hb]

e[|

co < encode(0) + v
1 <— encode(1) +

b & U({0,1})
return

(A7 Ba Bl: Cb*)




IND-CPA security of Lindner—Peikert

Game 2:

<

Game 3:

co < encode(
c1 < encode(

b & U({0,1)
return

(A7 67 ]5/7 Cb*)

N——"

Game 4:

A & u @z
b & uzr)

(
co < encode(0
c1 < encode(1

b & U{0,1)
return

(Aa Ba Bla Cb*)

N——

1: A i U(ngn)
2: f) ﬁ U(ZZ)
3. b)) & u(znt)

© br & uU{o,1})
5: return (A,b,b’, )




An example: FrodoKEM

 KEM: Key encapsulation e Sj ian:
mechanist (sinﬁ)plified key Slmple deSIQn' . .
exchange protocol) * Free modular arithmetic
- Builds on basic (IND-CPA) (q = 2°)
LWE public key encryption » Simple Gaussian
* Achieves IND-CCA security sampling
against adaptive adversaries . .
resistant variant of the vector operat|ons

Fujisaki-Okamoto transform

» Negligible error rate * No reconciliation

* Simple to code

[Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila. ACM CCS 2016]
[Alkim, Bos, Ducas, Easterbrook, LaMacchia, Longa, Mironov, Naehrig, Nikolaenko, Peikert, Raghunathan, Stebila. FrodoKEM NIST Submission, 2017-2021]



FrodoKEM construction

FrodoPKE.KeyGen

IND-CPA secure

FrodoPKE

-~

FrodoPKE.Enc

~

FrodoPKE.Dec

Algorithm 9 FrodoPKE.KeyGen.

Input: None.
Output: Key pair (pk, sk) € ({0,1}"a x Z2*™) x Z2*™.

Choose a uniformly random seed seedp s U({0,1}'"a)
Generate the matrix A € Z7*" via A < Frodo.Gen(seed )
Choose a uniformly random seed seedg s U ({0, 1}'*"=)

Sample error matrlx S < Frodo.SampleMatrix(seedg, n, 7, Ty, 1)

Samplegerre #~ Frodo. SampleMatrlx(seedE,n R Lyi2)
Compite B = AS +E Basic LWE public key
return“pes e (seeda,B) and secret key sk < S
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FrodoKEM construction

Algorithm 9 FrodoPKE.KeyGen.
IND-CPA secure gt e S
Input: None.
FrodoPKE

Output: Key pair (pk, sk) € ({0,1}"a x Z2*™) x Z2*™.
FrodoPKE.KeyGen ; :
: Sample error matrix S <— Frodo.SampleMatrix(seedg, n,n, T}, 1)

3
4
- N 5: Sample error matrix E - Frodo.SampleMatrix(seedg, n, 7, T}, 2)
6
Y 4

Pseudorandom

seed o Ato save
as space

Fr PKE En : Compute B=AS + E
odo c : return public key pk < (seeda,B) and secret key sk < S

~
_J

FrodoPKE.Dec
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FrodoKEM construction

IND-CPA secure

FrodoPKE

[FrodoPKE.KeyGen}

FrodoPKE.Enc

[ FrodoPKE.Dec J

Algorithm 10 FrodoPKE.Enc.

Input: Message u € M and public key pk = (siedig,B) 40, 1) e
Output: Ciphertext ¢ = (Cy, Cg) € Z7**™ x Zg**".

Generate A < Frodo.Gen(seeda )

Choose a uniformly random seed seedg <s U ({0, 1}'*"=)

Sample error matrix S’ < Frodo.SampleMatrix(seedg, m, n, T}, 4)
Sample error matrix E’ < Frodo.SampleMatrix(seedg, m, n, T}, 5)

Sample gfTor matrix £ <y Frodo.SampleMatrix(seedg, m, 77, Ty, 6)
Compute B =S’A+E and V=SB + E”

return Cip 1,Cs) = (B’, V 4 Frodo.Encode(u))

Basic LWE ciphertext
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FrodoKEM construction

IND-CPA secure

FrodoPKE

[FrodoPKE.KeyGen}

FrodoPKE.Enc

[ FrodoPKE.Dec J

Algorithm 10 FrodoPKE.Enc.

Input: Message u € M and public key pk = (siedig,B) 40, 1) e
Output: Ciphertext ¢ = (Cy, Cg) € Z7**™ x Zg**".

Generate A < Frodo.Gen(seeda )
Choose a uniformly random seed seedg <s U ({0, 1}/*")

Sample error matrix S’ < Frodo.SampleMatrix(seedg, m, n, T}, 4)
Sample error matrix E’ < Frodo.SampleMatrix(seedg, m, n, T}, 5)
Sample error matrix E” « Hodo-SampleMatrik(seedg, m, 7, Ty, 6)
Compute B’ =S’A+E and V = S’B + E”

return ciphertext ¢ + (Cj, :

rodo.Encode(u))

Shared secret
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FrodoKEM construction

IND-CPA secure

FrodoPKE

[FrodoPKE.KeyGen}

FrodoPKE.Enc

[ FrodoPKE.Dec J

Algorithm 10 FrodoPKE.Enc.

Input: Message u € M and public key_pk = (Siedf"B) € {0,1}"a x Z’,;Xﬁ.
Output: Ciphertext ¢ = (Cy, Cg) € Z7**™ x Zg**".

Generate A < Frodo.Gen(seeda )

Choose a uniformly random seed seedg <s U ({0, 1}/*")

Sample error matrix S’ < Frodo.SampleMatrix(seedg, m, n, T}, 4)
Sample error matrix E’ < Frodo.SampleMatrix(seedg, m, n, T}, 5)
Sample error matrix E” <~ Frodo.SampleMatrix(seedg, m, 7, Ty, 6)

Compute B’ = S’A + E’ and V = S'B T
. 'V + Frodo.Encode(u))

return ciphertext ¢ + (C,,Cs) = (B
Key transport using

public key encryption
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FrodoKEM construction

IND-CPA secure

FrodoPKE
( )
FrodoPKE.KeyGen
- J
: | Algorithm 11 FrodoPKE.Dec.
FrodoPKE.Enc Input: Ciphertext ¢ = (Cl, Cz) € ZTX" x Z7*™ and secret key sk =S € Z*™.
N J Output: Degrypted.message EM

M=C,;-C;S
sEme 0. Decode(M)

1: Comput
FrodoPKE.Dec PR M



FrodoKEM construction

IND-CPA secure
FrodoPKE
(" )
FrodoPKE.KeyGen
N\ J
: | Algorithm 11 FrodoPKE.Dec.
FrodoPKE.Enc Input: Ciphertext ¢ = (Cy,C2) € Z7**™ x Z7**™ and secret key sk =S € Z*".

N J Output: Decrypted message u' € M.

1: Compute M = C, — @7
FrodoPKE.Dec 2: return message p’ <} Frodo.Decode(M)



FrodoKEM construction

IND-CPA secure

—
FrodoPKE Fujisaki-Okamoto
(FO) transform
FrodoPKE.KeyGen
FrodoPKE.Enc Adds well-formedness checks

Implicit rejection

FrodoPKE .Dec Requires negligible error rate

IND-CCA secure

FrodoKEM

FrodoKEM.KeyGen

FrodoKEM.Encaps

FrodoKEM.Decaps
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FrodoKEM parameters
| FrodoKEM-640 | FrodoKEM-976

Dimension n
Modulus g
Error distribution

Failure probability
Ciphertext size

Estimated security
(cryptanalytic)
Runtime (encaps; AES)

640
215
Approx. Gaussian
[-12, ..., 12],0=2.8
2-138
9,720 bytes

2145 classical

2132 quantum
0.48 msec

976
216

Approx. Gaussian
[-10, ..., 10], 0= 2.3
2-199

15,744 bytes

2210 classical
2191 quantum

0.89 msec
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3. Cryptography from learning with errors

Digital signature schemes



Signature schemes from identification schemes

* |dentification scheme: interactive protocol
between a prover and a verifier in which the
prover authenticates to the verifier.

» Setup:
* Prover: generates long term key pair
(vk, sk) & KeyGen()
* Verifier: obtains a copy of the verification key



General flow of an identification scheme

Prover(sk) Verifier(vk)
(Y, y) & Cmt(sk) —
L ch < Ch(Y)
2 & Resp(sk,y,ch) —

Viy(vk, Y, ch, z)



|[dentification Schemes: Security

Security goal: secure against impersonations under
passive attack (IMP-PA).

Passive attack Impersonations

 adversary gets * hard to make an
transcripts of honest verifier accept

protocol executions

81



Schnorr identification scheme

KeyGen():

1. x & Ly
2: X & g*
3: return (vk,sk) «— (X, x)

Prover(sk) Verifier(vk)
$
Y <« Ly
Y «— g? L)
L ch <& 2,

z«—1x-ch+y modq —
Ying—ch



Fiat—Shamir transform

 Turn an interactive identification scheme into a non-
Interactive signature scheme

* The prover generates the challenge herself
* Challenge is H(commitment, message)

* Theorem: If H is a random oracle and the
identification scheme is IMP-PA secure, then the
resulting signature scheme is existentially unforgeable
under chosen message attack.



Schnorr signature scheme

* Apply Fiat—Shamir transform to Schnorr identification scheme

* The DSA and ECDSA signature schemes are Schnorr-like
signature schemes

Sign(sk = x,m) Viy(vk = X, m,o0 = (Y, 2))
1.y & 7, 1: ch «— H(Y|m)
2: Y « ¥ 2: return (Y = g? X ")
3: ch — H(Y|m)
4: z «— x-ch +y mod ¢
5. return o <« (Y, 2)



Lyubashevsky’s ldentification Scheme

o KeyGen:
1. Choose s <=5 {0,1}", A <-sZp*™. e Resp(pk,sk =s,c,y):

2. Secret key is s 1. Compute z =c-s+ v mod q

3. Public key is (A, b = As mod g) 2. If z is safe (z € {1,...,5m — 1}"),
o Cmt(pk): then return z

1. Choose v <s{0,1,...,5m — 1}™ 3. Else, abort

2. Commitment is y = Av mod ¢ o Viy(pk = (A,b),y,c, z):
* Chipk): 1. Accept iff Az =c-b + y mod ¢

1. Choose ¢ s {0,1} and ||z|| < 5m!t°

2. Challenge is ¢
PKC 2008



Correctness of Lyubashevsky’s ID scheme

«Thecheck z € {1,...,5m — 1}"™
avoids degenerate case that might leak
information about the secret key

*For m > 10, this check passes with probability at
least 81%; can repeat to amplify success
probability



Security of Lyubashevsky’s 1D scheme

*Lyubashevsky’s identification scheme is IMP-PA-
secure if the SIS problem is hard with parameter
beta=15m1-°.



Short integer solution problem

 Parameters:
 Dimensions n, m
* Modulus g
* Integer beta < q

+Pick A ¢ Z1<™

Find non-zero v € Z™ such that:
e Av =0 mod q

s vl <6



Short integer solution problem

* Without the length constraint, ||v|| < 8
SIS can be easily solved using Gaussian elimination

* SIS can be viewed as a short vector problem in the
dual lattice of A

 As with LWE, can make
* Ring-SIS
* Module-SIS



Constructing a lattice-based signature scheme

» Could construct a lattice-based signature scheme
by applying the Fiat—-Shamir transform to a lattice-
based identification scheme, but the generic
transform is rather inefficient

e Use a direct construction
e Similar, but somewhat different



Lyubashevsky’s signature scheme

KeyGen: Sign:

1. Choose S +s {0,%1,...,dd}™>F 1. Sample y s D’

2. Compute ¢ <~ H(Ay, u) where

nxm
2. Choose A s Z] H:{0,1}* = {v:ve{0,£1}* |v|: <~}

3. Secret key 18 S 3. Compute z <~ Sc +y

4. Public key is (A, T = AS mod q) 4. Output (z,c) with probability
- D; (z)
min (MDSZ,U(Z) : 1)
otherwise restart signing

Viy:

1. Accept iff ||z]|s < nov/m
and ¢ = H(Az — Tc, i)

Eurocrypt 2012



Rejection sampling

Line 4 of the Sign algorithm is a technique called
“rejection sampling”

* The (surprising) effect of this rejection sampling step
IS to cause the distribution of outputs to be statistically
independent of the secret key S

 But it still outputs something with fairly high probability
(just a few repetitions required on average)



Correctness and security of Lyubashevsky’s

signature scheme
Correctness Security

- With probability at least *Theorem:IfHis a
1 =2 ||z||2 < nov/m random oracle and the

SIS problem is hard, then
Lyubashevsky’s
signature scheme is
existentially unforgeable
under chosen message
attack.




Derivations

*Lyubashevsky’'s signature scheme is the basis of
many lattice-based schemes:
*BLISS (Ducas et al. CRYPTO 2013)
* Bai and Galbraith (CT-RSA 2014)
 TESLA, gTESLA (using ring-SIS)
*NIST Round 3 finalist:
 CRYSTALS-Dilithium (using module-SIS)



RSA full domain hash digital signatures

KeyGen

1.

Alice picks two large
primes p and q and
computes n = pq

Alice picks a value e
and computes
d = e mod ¢(n)

Public verification
key: vk = (n, e)
Secret signing key:
sk = (n, d)

Signing

For Alice to sign a

message m:
1. Alice hashes mto
get Him)in {1, ..., n}
2. Alice computes
sig = H(m)d mod n
3. Alice sends (m, sig)

to Bob

Verification

For Bob to verify a signature
(m', sig'):
1.  Bob gets an authentic copy

of Alice's public verification
key vk = (n, e)

2. Bob computes
h = (sig')®* mod n

3. Bobchecksif Him')=h



GPV framework

KeyGen():

1. Using a “trapdoor”,
generate A € Z;™™
and B € Z;"™

such that B x A =0 mod ¢

Viy(A, u,s):

1. Accept iff
sAT = H(u) and s is short

Gentry, Peikert and Vaikuntanathan, ACM STOC 2008

Sign(B, 1):

1. Compute cg such that
coA’ = H(u)
(using standard linear algebra)

2. Use B to compute a vector
v € L(B) close to ¢

3. Signatureiss =cg— Vv



GPV framework

* First instantiated by the GGH97 and NTRUSign (2003)
schemes

» But those were completely insecure

* GPV is provably secure in the random oracle model under
the SIS assumption

* GPV computes v in a subtly different but important way

* NIST Round 3 candidate:
* Falcon (GPV framework using NTRU)



3. Cryptography from learning with errors

Advanced constructions



Fully homomorphic encryption from LWE

o KeyGen(): s i X (Zy)

e Enc(sk,pu € Zy): Pick ¢ € Z; such that (s,¢c) = emod q where e € Z
satisfies e = p mod 2.

e Dec(sk,c): Compute (s,c) € Zgy, represent thisase € ZN|[—2,2).
Return ' <+ e mod 2.

[Brakerski, Vaikuntanathan; FOCS 2011]



Fully homomorphic encryption from LWE

C1 + C2 encrypts 1 + uo:

(s,€1 + €2) = (s,€1) + (s,C2) = €1 + ez mod ¢

Decryption will work as long as the error e; + e; remains below ¢/2.

[Brakerski, Vaikuntanathan; FOCS 2011]



Fully homomorphic encryption from LWE

Let c; ®ca = (c1:¢24)ij € ZZ;Q be the tensor product (or Kronecker product).

c1 ® co is the encryption of s under secret key s ® s:

<S®S,C1 ®C2> — <S,C1> ' <S,C2> — €1+ €2 mod q

Decryption will work as long as the error e; - e5 remains below q/2.

[Brakerski, Vaikuntanathan; FOCS 2011]



Fully homomorphic encryption from LWE

* Error conditions mean that the number of additions
and multiplications is limited.

 Multiplication increases the dimension (exponentially),
so the number of multiplications is again limited.

* There are techniques to resolve both of these issues.
* Key switching allows converting the dimension of a
ciphertext.

* Modulus switching and bootstrapping are used to deal
with the error rate.



4. Difficulty of LWE
Lattice problems



Hardness of decision LWE — "lattice-based”

worst-case gap shortest

vector problem (GapSVP)

poly-time [Regev05, BLPRS13]

davelrage-case

decision LWE
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Lattices

Let B = {b1,b,} C Z;*" be a set of linearly independent basis vectors for Z.
Define the corresponding lattice

awy )

L=LB)=> zb;:z €L,

\ 1=1 y

(In other words, a lattice is a set of integer linear combinations.)

Define the minimum distance of a lattice as

AM(L)= min |v] .
veL\{0}



Lattices

~ Discrete additive
} i 2 : ' | i ) 2 subgroup of Z"

; ~ Equivalently,
= integer linear
._ - | B combinations

.. ofabasis

Diagram from http://www.cs.bris.ac.uk/pgrad/csjhvdp/files/bkz.pdf 106



Lattices

el el el There are many
| = bases for the
some short and
... T orthogonalish,
e el g g some long and
e T e T T e T e acute,

Diagram from http://www.cs.bris.ac.uk/pgrad/csjhvdp/files/bkz.pdf 107



Equivalence of bases

Two n x n matrices B and B’ generate the same lattice £ if and only if B and
B’ are related by a unimodular matrix, i.e. B’ = BU where U is a n x n matrix
with integer entries and determinant 4-1.



Hermite normal form

Definition. An m x n matrix A is in Hermite normal form if (informally)
it is lower triangular and its largest entry in each row is on the diagonal.

Fact. The HNF H of an integer matrix A is unique, and there is an n X n
unimodular matrix U such that H = AU.



Fundamental parallelepiped

Definition. The fundamental parallelepiped of the set {51, el l;n} C R"

1S the set
) \

\ 1=1 y

N\

Fact. The volume of the fundamental parallelepiped of {b1,...,b,} is | det(B)]
where B is the column matrix.

Lemma |[Galbraith, Lemma 16.1.9]|. The volume of the fundamental paral-
lelepiped of a lattice is independent of the choice of basis.



Successive minima

Definition. Let £ be a full rank-lattice of dimension n. The n successive
minima of £ are Aq,...,\, € R such that each \; is minimal such that there
exist ¢ linearly independent vectors vy, ...,9; € £ with ||7;]| < Aj for 1 < 5 <.
Sometimes we write A\; = \;(L).

In other words, Ay is the length of the shortest non-zero vector in £, and 0 <
AL S Ag < <A



Easy lattice problems

The following problems can be solved using standard linear algebra techniques:

e Lattice membership: Given an m X n basis matrix B for a lattice
L CZ™ and a vector v € Z™, determine whether v € L.

—

e Lattice basis: Given a set of possibly linearly dependent vectors 51, ..., by, €
Z™, find a basis for the lattice generated by them.

e Kernel lattice: Given an n X m integer matrix A, compute a basis for
the lattice ker(A) = {&: A¥ = 0}.

e Kernel lattice modulo M: Given an n X m integer matrix A and an
integer M, compute a basis for the lattice ker(A) = {7 : A¥ =0 mod M }.



Shortest vector problem

Diagram from http://www.cs.bris.ac.uk/pgrad/csjhvdp/files/bkz.pdf

Given some
basis for the
lattice, find
the shortest
non-zero
lattice point.



Shortest vector problems

e Shortest vector problem (SVP): Given a basis B for £, find a vector
v € L such that ||¥|| = A\ (L).

e Approximate shortest vector problem (SVP,): Fix v > 1. Given a
basis B for L, find a non-zero vector v € L such that ||U]|| < v - A1 (L).

e Decision approximate shortest vector problem (GapSVP,): Fix
v > 1 and r > 0. Given a basis B for £ where either \{(£) < r or
A (L) >~ - r, determine which is the case. Sometimes this is stated with
r=1.

e Shortest independent vector problem (SIVP,): Fix v > 1. Given a
basis B for a lattice £, find a linearly independent set {#1,...,%,} such
that max; ||U;|| < v - A (L£).



Closest vector problem

Diagram from http://www.cs.bris.ac.uk/pgrad/csjhvdp/files/bkz.pdf

Given some
basis for the
lattice and a
target point in
the space,

find the closest
lattice point.



Closest vector problems

¢ Closest vector problem (CVP): Given a basis B for £ and a vector
w € Q™, find a vector ¥ € L such that ||w — ¥|| is minimal.

e Bounded distance decoding problem (BDD,): Fix 0 < o < 1/v/2.
(Given a basis B for a lattice £ and a vector w € Q™ such that there is a

lattice point ¥ with || — ¥|| < aX1 (L), find .
(This is a CVP instance that is especially close to a lattice point.)



Modular lattices a.k.a. g-ary lattices

Let B € Z™*"™. Define
L,(B)={Z€Z™:Z= Bymod q for some € Z"} .
Let A € Z™*™. Define

1 — m . - __ A m
L7(A)={yeZ™: Aj=0mod q} 2 qZ™ .

Modular lattices are related to error correcting codes.
e L,(B) corresponds to the code generated by the columns of B.

o LqL (A) corresponds to the code whose parity check matrix is A.



Short integer solutions problem

Definition [Short integer solutions problem (SIS, ;. 3)]. Fix modulus g

and 8 < q. Given A € Z;*™, find non-zero v € Z™ such that Av = 0 mod g
and ||7]| < B.

Although this is not formulated directly as a lattice problem, it is a lattice
problem in the lattice £ (A).

e Without the length constraint ||v]| < 3, SIS can easily be solved by Gaus-
sian elimination.

e Without the constraint 8 < ¢, (¢,0,...,0) is trivially a solution.

e Any solution # for A can turned into a solution [Z|0] for [A|A’] with the
same (. Thus SIS becomes easier as m increases.

e SIS becomes harder as n increases.



Relations among lattice problems

[LLLS]

CVP, HSVP, < USVPy BDD /,
. L 2
(GMSS) 7. [Lo] Vi
SVP, GapSVP,
. IMG
v ) \/ﬁ [MG] *, IMR1]
2, M S§
/ﬂ,% %, IMR1] .4 /”_,__%}
SBPY R S SIVP}’ > SISn.q.m.v D A — LWEn.q.m.(x
Vvn/2, IMG] \ %, [My7
g
*, [R1]

Laarhoven, van de Pol, and de Weger, Cryptology ePrint Archive 2012/533

Almost all problems reduce to
SVP,. For example, SIVP, re-
duces to SVP,: any method that
solves all instances of SVP, can
be used to solve instances of
SIVP,,, up to a loss of the factor
of v/n in the subscript.
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Regev's reduction: LWE to shortest vector

Theorem. [Reg05] For any modulus ¢ < 2P°Y(") and any discretized Gaussian
error distribution y of parameter ag > 24/n where 0 < a < 1, solving the
decision LWE problem for (n,q,U,x) with at most m = poly(n) samples is
at least as hard as quantumly solving GapSVP_ and SIVP, on arbitrary n-

dimensional lattices for some v = O(n/cq).

The polynomial-time reduction is extremely non-tight: approximately O(n!3).

[Regev; STOC 2005]



Finding short vectors in lattices

LLL basis reduction algorithm Block Korkine Zolotarev (BKZ) algorithm
* Finds a basis close to * Trade-off between
Gram-Schmidt runtime and basis
» Polynomial runtime (in quality
dimension), but basis * In practice the best
quality (shortness / algorithm for
orthogonality) is poor cryptographically

relevant scenarios



Solving the (approximate) shortest vector problem

The complexity of GapSVP. depends heavily on how v and n relate, and get
harder for smaller ~.

Algorithm Time Approx. factor ~y
LLL algorithm poly(n) 9f2(nloglogn/logn)
various 2f2(nlogn) poly(n)
various 2£2(n) time and space poly(n)
Sch87 25tn/k) 2k
NP N co-NP > \/n
NP-hard n°W)

In cryptography, we tend to use v ~ n.



4. Difficulty of LWE

Cryptanalysis



Strategies for solving LWE

SIS strategy BDD strategy Direct strategy

*See Albrecht, Player, Scott for a good survey

Albrecht, Player, Scott. Journal of Mathematical Cryptology 2015. Cryptology ePrint archive 2015/046. 124



Short integer solution strategy [APS $4.1}

Solve decision LWE by finding a short vector ¢ such that (¥, a) = 0.

e Blum, Kalai, Wasserman algorithm [APS §5.2]: combinatorial method

e Lattice reduction [APS §5.3]: Use lattice reduction to find short vectors
in the scaled dual lattice (LLL, BKZ)

If we want to solve search LWE, use the search-decision equivalence in combi-
nation with solving decision LWE.

Albrecht, Player, Scott. Journal of Mathematical Cryptology 2015. Cryptology ePrint archive 2015/046.



Bounded distance decoding strategy [APS $4.2]

Solve search LWE by finding a short e such that (@, ¥) = b—e for some unknown
T

e Babai’s nearest plane algorithm
e Lindner—Peikert nearest planes, BDD by enumeration |[APS §5.4]

e Reducing BDD to unique SVP [APS §5.5]: use Kannan’s embedding of
the LWE lattice into a higher dimensional lattice with an appropriate
structure, then solve uSVP e.g. using lattice reduction

Albrecht, Player, Scott. Journal of Mathematical Cryptology 2015. Cryptology ePrint archive 2015/046.



Direct strategy [APS $4.3]

Solve search LWE by finding an 5" such that (a, s") is close to b.

e Exhaustive search [APS §5.1|: Exhaustive search for each component of §
based on the error distribution.

e Arora—Ge [APS §5.6]: solve a system of noiseless non-linear polynomials
with s as the root

Albrecht, Player, Scott. Journal of Mathematical Cryptology 2015. Cryptology ePrint archive 2015/046.



Picking concrete parameters

« Competing requirements:
« Want small dimension (to reduce communication)
* Want large dimension (to make problem harder)
* Want small noise (to reduce probability of error)
« Want large noise (to make problem harder)

« Want small modulus (to make problem harder and save
communication)

» Want large modulus (to reduce probability of error)
* Picking concrete parameters is tricky
* Lots to consider and state of art is advancing
» Costing quantum attacks is subtle
* See NTRU and Kyber NIST submissions for worked examples

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions



https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

b. Standardization of PQ cryptography



The path to standardization

Principles

* Legislation
* Regulators

Policies

» Standards organizations: ISO, ...
* Industry bodies:

« PCI-DSS, ANSI, NIST, ...

Tools

» Technology standards organizations

« [ETF, ANSI, ...

‘ Mathematics

» Specialist organizations

* NIST, CFRG

130



Standardizing post-quantum cryptography

INFORMATION
ASSURANCE
DIRECTORATE

Commercial National Security Algorithm Suite

and Quantum Computing FAQ

MFQ U/00/815099-15
January 2016

Aug. 2015 (Jan. 2016)

“IAD will initiate a
transition to quantum
resistant algorithms in
the not too distant
future.”

— NSA Information
Assurance Directorate,
Aug. 2015

=CSRC MENU

Q

COMPUTER SECURITY
RESOURCE CENTER

CSrC

Post-Quantum Cryptography

Post-Quantum Cryptography Standardization

Post-quantum candidate algorithm nominations are due November 30, 2017.

Call for Proposals

Call for Proposals Announcement

NIST has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant
public-key cryptographic algorithms. Currently, public-key cryptographic algorithms are specified in

FIPS 186-4, Digital Signature Standard, as well as special publications SP 8 6A Revision 2
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NIST Post-quantum Crypto Project timeline

NS NsST NIST NST NST NIST
Call for PQ Submission Round 2 Round 3 Draft Final
proposals deadllne deadlme deadllne standard standard
Round 4
Dec. Nov. Mar. Oct. 2022-23 2024
2016 2017 2019 2020 2022-23
Round 1: Round 2: Round 3:
69 schemes 26 schemes Finalists:
1/3 signatures 9 signatures « 3 signatures
2/3 PKE 17 PKE « 4 PKE
Alternates:
« 3 signatures
« 5PKE
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http://www.nist.gov/pqcrypto

Will we be ready in time?

EU commission
universal quantum

computer
Quantum threat
ler survey 50%
Draft Final likelihood
standard standard
2020 2022-23 2024 2026 2031 2035

Retroactive decryption:
record encrypted communication of broaing ROA-2048

now, decrypt it once you have a
quantum computer of breaking RSA-2048

Mosca — 1/2 chance
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Timeline to replace cryptographic algorithms

ler First full EU commission
collision universal quantum
SHA-1 SHA-1 for SHA-1 computer
standardized weakened
Quantum threat
NIST NIST survey 50%
SHA-2 Final likelihood
standardized standard
1995 2001 2005 Jan. Aug. 2024 2026 2031 2035
2017 2017
Browsers stop accepting
(- Q ) i Mosca — 1/7 chance
c ’ SHA-1 certificates of breaking RSA-2048
\ & J

v Mosca — 1/2 chance

16 years of breaking RSA-2048
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NIST Round 3

Finalists

Key encapsulation mechanisms
» Code-based: Classic McEliece

« Lattice-based: Kyber, NTRU, Saber

* At most one of these 3 will be
standardized

Signatures

 Lattice-based: Dilithium, Falcon

« At most one of these 2 will be
standardized

 Multivariate: Rainbow

Alternate candidates

Key encapsulation mechanisms
« Code-based: BIKE, HQC

L attice-based:
FrodoKEM, NTRU Prime

* |Isogeny-based: SIKE

Signatures

» Symmetric-based:
Picnic, SPHINCS+

 Multivariate: GeMSS



NIST Round 3 KEM Finalists

Saber

NTRU

Kyber

Cl. McEliece

ECDH x25519

RSA 2048

Public key and ciphertext sizes (bytes)
(level 1 - 128-bit security)

672
736
699
699
800
736

128

0 500 1000 1500 2000

m publickey m ciphertext

2500

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

Based on Round 2 submission documents; AV X2 runtimes normalized

Runtimes (seconds)
(level 1 - 128 bit security)

>0.1 0.071
0.000844
0.000039 0.000047 0.000014 0.000017
RSA 2048 ECDH x25519 Cl. McEliece Kyber NTRU

keygen mencaps ™ decaps

0.000022

Saber
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NIST Round 3 Signature Finalists

Public key and signature sizes (bytes)

(level 1 - 128-bit security)

0.004
Falcon
0.0035
0.003
s 1184
Dilithium
2044
0.0025
Rainbow 248992 0.002
64
0.0015
32
ECDSA p256 L &
0.001
258 0.0005
RSA 2048
256
0
0 500 1000 1500 2000 2500

m publickey msignature

Based on Round 2 submission documents; AV X2 runtimes normalized

>0.1

0.000027

RSA 2048

Runtimes (seconds)
(level 1 - 128 bit security)

0.007
Plot Area
0.000083 0.000009 0.000038 l000064
— | — . ==
ECDSA p256 Rainbow Dilithium Falcon
keygen msign mverify
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Confidence in quantum-resistant security

Fast computation Small communication
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NIST’s priorities for Round 3 analysis

Cryptanalysis Implementations

» Better understand » Side-channel resistant
CoreSVP hardness of implementations
lattice-based schemes » Easy of implementation

* Does choice of lattice « Performance data in
SDtrU_Cctjurﬁ Tatter?K i Internet protocols

* Decide between er, o
NTRU. Saber y Eaerré‘lc\),&g}aence data for

* Decide between Dilithium  implementations
and Falcon



OPENQU/

software
quan mre > |

o

https://openquantumsafe.org/ ¢ https://github.com/open-quantum-safe/


https://openquantumsafe.org/
https://github.com/open-quantum-safe/

Use in applications

Integration into forks
of widely used open-
source projects

C language library,

common API

» x86/x64 (Linux,
Mac, Windows)

 ARM (Android,
Linux)

Open Quantum Safe Project

Apache : curl, Open ]

OpenSSL
S/MIME, TLS 1.3, X.509
OpenSSL 3 provider

Language
SDKs
C#, C++, Go,

Java Python
Rust

BoringSSL

key exchange / KEMs

. . lattice- multi-variate hash-based

signatures

https://openquantumsafe.org/ ¢ https://github.com/open-quantum-safe/

Industry partners:
Amazon Web
Services

* evolutionQ

* |IBM Research

* Microsoft Research

Additional contributors:
+ Cisco

* Senetas

+ PQClean project

* Individuals

Financial support:
AWS
Canadian Centre
for Cyber Security
NSERC
Unitary Fund


https://openquantumsafe.org/
https://github.com/open-quantum-safe/

Cautious "hybrid" approach

« Some proposed post-quantum solutions could be broken

* Hybrid approach: use traditional and post-quantum
simultaneously to reduce risk during transition

* Focus on algorithms that advance through NIST process

- post- -
traditional quantum M o




Wrapping up



Post-quantum crypto at University of Waterloo

Main research areas:
» Design of post-quantum cryptosystems

» Cryptanalysis of post-quantum problems on
classical or quantum computers

 Efficient implementations of post-quantum
cryptography

« Adapting network protocols to post-quantum
algorithms

Main mathematical problems:

* |sogeny-based
* Lattice-based (learning with errors, NTRU)

Involved in 4 (out of 16) NIST Round 3
candidates:

Finalists:

« CRYSTALS-Kyber (module learning
with errors)

 NTRU (also lattice based)

Alternate candidates:
* FrodoKEM (learning with errors)
« SIKE (isogenies on elliptic curves)



More reading

NIST Round 3

https://nist.gov/pgcrypto

Quantum threat timeline
https://globalriskinstitute.org/publications/quantum-threat-timeline/

Background on post-quantum crypto

* Post-Quantum Cryptography, b)é Bernstein, Buchmann, Dahmen (2009)
https://link.springer.com/book/10.1007/9738-3-540-88702-7

« EU Overview Report (Feb 2021) o
https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation

Lattice-based crypto

+ Mathematics of Public Key Cryptographa/ by Steven Galbraith (2012
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html

* A Decade of Lattice _Cryptog}raphy by Chris Peikert (2017)
https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf

« On the concrete hardness of learning with errors, by Albrecht, Player, Scott (2015)
https://eprint.iacr.org/2015/046
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