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© What is Causal Inference?
@ Difficulties

© Random Variables

@ Graphs

© Granger Causality

@ Structural Equation Model
@ Intervention

© Graphical models

© Faithfulness

@ Do operation

@ Learning Causal Bayes Nets
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Motivation

We often are interested in discovering causation vs correlation.

Example: [Chocolate - Nobel Prizes| Messerli [2012] reports that there is
a significant correlation between a country's chocolate consumption (per
capita) and the number of Nobel prizes awarded to its citizens.
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@ We must be careful with drawing conclusions like “Eating chocolate
produces Nobel prize” or “Geniuses are more likely to eat lots of
chocolate.”
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@ We must be careful with drawing conclusions like “Eating chocolate
produces Nobel prize” or “Geniuses are more likely to eat lots of
chocolate.”

@ Correlation does not imply causation!
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Application areas include:

o Computational Neuroscience: Advances in recording technologies
have given neuroscience researchers access to large amounts of data,
e.g., individual recordings of neurons in different parts of the brain.
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Application areas include:

o Computational Neuroscience: Advances in recording technologies
have given neuroscience researchers access to large amounts of data,
e.g., individual recordings of neurons in different parts of the brain.
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Application areas include:

o Computational Neuroscience: Advances in recording technologies
have given neuroscience researchers access to large amounts of data,
e.g., individual recordings of neurons in different parts of the brain.
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@ Could we understand firing of which neurons causes others to fire and
hence learn the functional connectivity in the brain?
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Application areas include:

e Financial Markets: Financial instability can lead to financial crises
due to its contagion or spillover effects to other parts of the economy.
Having an accurate measures of systemic risk and inter-dependencies
between financial institution gives central banks and policy makers the
ability to take proper actions in order to stabilize financial markets.

Closing Share Prices of FANG socls
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Application areas include:

@ Social Networks: For networks with large numbers of nodes, such as
millions of people in a social network, e.g., Twitter, having efficient
algorithms that recover the graphical models is critical.
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@ Vertical lines depict each time a message was posted by that agent. A
major research goal is to infer whether, and how strongly, the news
corporation influences the users by analyzing these time-series.
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Difficulties

o Incomplete universe: Not observing all the relevant variables may
lead to false conclusion. For instance, in the chocolate-Noble prize
example, the correlation stems from some hidden variables like
economic strength of a country.
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Difficulties

@ Incomplete universe: Not observing all the relevant variables may
lead to false conclusion. For instance, in the chocolate-Noble prize
example, the correlation stems from some hidden variables like
economic strength of a country.

o Computational Issues: Understanding the causal interaction in a
large network such as social networks, requires large processing large
amounts of data (think: computational power and large memory
usage).
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Difficulties

@ Incomplete universe: Not observing all the relevant variables may
lead to false conclusion. For instance, in the chocolate-Noble prize
example, the correlation stems from some hidden variables like
economic strength of a country.

o Computational Issues: Understanding the causal interaction in a
large network such as social networks, requires large processing large
amounts of data (think: computational power and large memory
usage).

o Simultaneous effects: In time series analysis, inaccurate sampling
rate will lead to simultaneous influences between time series. Such
influences cannot be captured using, for example, Granger-causality
analysis and requires finer and more complex analysis.
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Simpson's paradox

Simpson’s paradox: The table reports the success rates of two
treatments for kidney stones

Patients with ~ Patients with
small stones large stones

78% (273/350)  93% (31/87)  73% (192/263)

Overall

Treatment A:
Open surgery
Treatment B:

Percutancous nephrolithotomy

83% (289/350) 87% (234/270)  69% (55/80)

- Although the overall success rate of treatment B seems better, treatment
B performs worse than treatment A on both patients with small kidney
stones and patients with large kidney stones.

- How do we deal with this inversion of conclusion?
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Simpson's paradox

Another example of Simpson's paradox:

Admission data on university level:

Applicants Admitted

Men 8442 44%
Women 4321 35%
Admission data on department level:

Men Women
Departments Applicants Admitted Applicants Admitted
A 825 63% 108 82%
B 560 62% 25 68%
C 325 37% 593 39%

Among 85 departments, there are 6 against men but only 4 against women.
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Preliminaries

Throughout the lecture we use the following notation.

e (Q, F,P) : probability space, where € is the set of all possible
outcomes, F is the set of events and P is the assignment of
probabilities to the events.
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Preliminaries

Throughout the lecture we use the following notation.

e (Q, F,P) : probability space, where € is the set of all possible
outcomes, F is the set of events and IP is the assignment of
probabilities to the events.

@ A random variable is a measurable function X : Q — E from a set of
possible outcomes 2 to a measurable space E. The probability that
X takes on a value in a measurable set S C E is written as

P(X € S)=P({w € Q| X(w) € S})
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Preliminaries

Throughout the lecture we use the following notation.

o (Q, F,P) : probability space, where Q is the set of all possible
outcomes, F is the set of events and P is the assignment of
probabilities to the events.

@ A random variable is a measurable function X : Q — E from a set of
possible outcomes €2 to a measurable space E. The probability that
X takes on a value in a measurable set S C E is written as

P(X €S)=P{w e Q| X(w) € S})

@ In many cases, X is real-valued, i.e. E =R.
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Preliminaries

Throughout the lecture we use the following notation.

e (Q, F,P) : probability space, where € is the set of all possible
outcomes, F is the set of events and P is the assignment of
probabilities to the events.

@ A random variable is a measurable function X : Q — E from a set of
possible outcomes 2 to a measurable space E. The probability that
X takes on a value in a measurable set S C E is written as

P(X € S)=P({w € Q| X(w) € S})

@ In many cases, X is real-valued, i.e. E =R.

e PX is the distribution of the p-dimensional random vector X.
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Preliminaries

Throughout the lecture we use the following notation.

e (9, F,P) : probability space, where Q is the set of all possible
outcomes, F is the set of events and P is the assignment of
probabilities to the events.

@ A random variable is a measurable function X : Q — E from a set of
possible outcomes €2 to a measurable space E. The probability that
X takes on a value in a measurable set S C E is written as

P(X €S)=PH{w € Q| X(w) € S})

@ In many cases, X is real-valued, i.e. E =R.
e PX is the distribution of the p-dimensional random vector X.
@ We call X independent of Y and write X_ 1L Y if and only if

P(x,y) = P(x)P(y)
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e We call Xi, ..., X, jointly (or mutually) independent if and only if

P(Xy, ..., Xp) = P(X1)..P(Xp).
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e We call Xi, ..., X, jointly (or mutually) independent if and only if
P(X1, ..., Xp) = P(X1)..P(Xp).

e We call X independent of Y conditional on Z and write X 1L Y|Z if
and only if
P(x,y|z) = P(x|2)P(y|z)

for all x, y, z such that p(z) > 0. Otherwise, X and Y are dependent
conditional on Z and we write X /L Y|Z.
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e We call Xi, ..., X, jointly (or mutually) independent if and only if
P(X1, ..., Xp) = P(X1)..P(X,).

e We call X independent of Y conditional on Z and write XL Y|Z if
and only if
P(x, y|z) = P(x|2)P(y|2)

for all x, y, z such that p(z) > 0. Otherwise, X and Y are dependent
conditional on Z and we write X /I Y|Z.

e We call X and Y uncorrelated if E[X?],B[Y?] < oo and

E[XY] = E[X]E[Y]
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e A graph G = (V,€) consists of (finitely many) nodes or vertices
V ={1,...,p} and edges £ C V2 with (v,v) ¢ £ forany v € V.
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e A graph G = (V, &) consists of (finitely many) nodes or vertices
V =1{1,..,p} and edges & C V? with (v,v) ¢ & for any v € V.

e A graph G; = (V4,&1) is called a subgraph of G if V4 = V and
& CE.
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e A graph G = (V, &) consists of (finitely many) nodes or vertices
V =1{1,...,p} and edges & C V2 with (v,v) ¢ & for any v € V.

e A graph G; = (V4,&1) is called a subgraph of G if V; = V and
& CE.

@ A node i is called a parent of j if (i,j) € £ and (j,i) ¢ £ and a child
if (j,/) €& and (i,j)¢E.
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e A graph G = (V, &) consists of (finitely many) nodes or vertices
V ={1,...,p} and edges & C V2 with (v,v) ¢ & for any v € V.

e A graph G; = (V4,&1) is called a subgraph of G if V4 = V and
& CE.

@ A node j is called a parent of j if (i,j) € £ and (j, /) ¢ £ and a child
if (j,/) €& and (i,j) ¢ €.

@ Two nodes i and j are adjacent if either (i,j) € £ or (j,i) € £.
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A graph G = (V, &) consists of (finitely many) nodes or vertices

V ={1,...,p} and edges & C V2 with (v,v) ¢ & for any v € V.

A graph G; = (V4,&1) is called a subgraph of G if V4 = V and

& CE.

@ A node i/ is called a parent of j if (i,j) € £ and (j, ) ¢ £ and a child
if (j,/) €& and (i,j) ¢E.

Two nodes i and j are adjacent if either (i,j) € € or (j,i) € £.

@ The skeleton of G does not tNake the directiorjs of the edges into
account: it is the graph (V, &) with (i,j) € &, if (i,j) € € or
(U,i) €€.

28/123



o A directed path in G is a sequence of (at least two) distinct vertices
i1, ..., in, such that there is an edge from iy and ixy for all
k=1,...,n—-1.

29/123



e A directed path in G is a sequence of (at least two) distinct vertices

iy ..., in, such that there is an edge from i, and i,y for all
k=1,...,n—1.

@ Node i is an ancestor of node j, if there is a directed path from / to j.
Then, j is a descendant i.
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e A directed path in G is a sequence of (at least two) distinct vertices
i1, ..., in, such that there is an edge from iy and ixy1 for all
k=1,...,n—1

@ Node i is an ancestor of node j, if there is a directed path from / to j.
Then, j is a descendant i.

@ Graph G is called directed acyclic graph (DAG) if it has no directed
cycle, if there is no pair (j, k) with directed paths from j to k and
from k to j.
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A directed path in G is a sequence of (at least two) distinct vertices
i1, ..., in, such that there is an edge from iy and ik for all
k=1,...,n—1.

Node / is an ancestor of node j, if there is a directed path from i to j.
Then, j is a descendant i.

Graph G is called directed acyclic graph (DAG) if it has no directed
cycle, if there is no pair (j, k) with directed paths from j to k and
from k to j.

Adjacency matrix: We can represent a DAG G = (V/, E) over p nodes
with a binary p x p matrix A (taking values 0 or 1): A;; = 1 iff

(ij) € €.
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Graphical representation

@ A joint distribution over a set of variables can be factorized using
Bayes rule.

@ A factorization of a joint distribution can be visualized using a
directed graph (Bayesian network)
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Graphical representation

@ A joint distribution over a set of variables can be factorized using
Bayes rule.

@ A factorization of a joint distribution can be visualized using a
directed graph (Bayesian network)
o Example:

P(X1, X2, X3, Xa) = P(X1)P(X2| X1)P(X3| X1, X2)P(Xa| X1, X2, X3)

Xo

@ Edges represent conditional dependencies.
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Granger Causality

e Clive Granger (1969): "We say that X is causing Y if we are better
able to predict (the future of ) Y using all available information than
if the information apart from (the past of) X had been used.”
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Granger Causality

o Clive Granger (1969): "We say that X is causing Y if we are better
able to predict (the future of ) Y using all available information than
if the information apart from (the past of) X had been used.”

o Granger's Formulation: AR model

p
Yi=c+ Z arYi s+ b Xir+ e

T=1

p
Y, = c’—l—Za’TYt_T—l—e’t

=1
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Granger Causality

e Clive Granger (1969): "We say that X is causing Y if we are better
able to predict (the future of ) Y using all available information than
if the information apart from (the past of) X had been used.”

@ Granger's Formulation: AR model

p
Yi=c+ Z a Y +b X s +e
=1

p
Y, = c’—|—Za’TYt,T+e't

T=1

o F-test: to assess quality of prediction.
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Granger Causality

e Clive Granger (1969): "We say that X is causing Y if we are better
able to predict (the future of ) Y using all available information than
if the information apart from (the past of) X had been used.”

@ Granger's Formulation: AR model

P
Yi=c+ Z Y+ b X s+ e

T=1
P
NS R
=1
@ F-test: to assess quality of prediction.
@ RSS: predictive sum of squared residues.

T

;
_\" 2 ) _N~yn2 - _ (RSS'—RSS)/p
RSS =€, RSS'=) ();, To= RSS /(T —2p — 1)

T=1 T=1

o If T > some critical value, reject the null hypothesis
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Granger Causality

e Clive Granger (1969): "We say that X is causing Y if we are better
able to predict (the future of ) Y using all available information than
if the information apart from (the past of) X had been used.”

@ Granger's Formulation: AR model

p
Yi=c+ Z Y +b X s+ e

T=1
P
Yt = CI +Za;yt77- +€2
T=1
@ F-test: to assess quality of prediction.
@ RSS: predictive sum of squared residues.

T

;
_ 2 r_ 2 _ (RSS’—RSS)/p
RSS =€, RSS'=) ()7, To= RSS /(T —2p 1)

=1 =1
o If T > some critical value, reject the null hypothesis

@ Cons: Linear assumption, stationarity, time synchronization.
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Going beyond linear models

e Sequential Predictors: w; = gi(Yi,..., Yi-1, X1, ..., X;) and
w; = g(Y1,..., Yic1)
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Going beyond linear models

e Sequential Predictors: w; = gij(Ya, ..., Yi—1, X1, ..., Xj) and
W = &i(Y1,..., Yi-1)
@ Outcome y is revealed, the loss incurred: ¢(y, w)
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Going beyond linear models

@ Sequential Predictors: w; = gij(Ya, ..., Yi-1, X1, ..., Xj) and
W = &i(Y1,..., Yi-1)
@ Outcome y is revealed, the loss incurred: ¢(y, w)

e Reduction in loss (regret): + Z,T:1 Uyi, wi) — yi, W;)
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Going beyond linear models

Sequential Predictors: w; = gij( Y1, ..., Yi-1, X1, ..., Xj) and
wi = &i(Y1, ..., Yi-1)

Outcome y is revealed, the loss incurred: ¢(y, w)
Reduction in loss (regret): =S Uy, wi) — £(yi, W;)

°
°

o Case:
e Logarithmic loss: ¢(y, w) = — log w(y)
°

Predictors: beliefs (the optimal predictors are conditional densities)

43/123



Going beyond linear models

@ Sequential Predictors: w; = gi(Ya, ..., Yi-1, X1, ..., Xj) and
Wi = &i( Y1, ..., Yic1)

@ Outcome y is revealed, the loss incurred: ¢(y, w)
e Reduction in loss (regret): + Z,Tzl Uy, wi) — yi, ;)
o Case:
e Logarithmic loss: ¢(y, w) = — log w(y)
e Predictors: beliefs (the optimal predictors are conditional densities)
@ Then the regret will be:
i-1
Z| W = %I(XT - YT

e Entropy of random variable X: H(X) := —E[log P(X)]
@ Mutual information between X and Y : /(X;Y) := H(X) — H(X|Y)
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Structural Equation Model (SEM)

@ A structural equation model (SEM) (also called a functional model)
is defined as a tuple S := (S,PN), where S = (51, ..., Sp) is a
collection of p equations

Si: Xj=Ff(PALN), j=1,...p,

e PA; C{Xi,...,Xp}/{X;} are called parents of X;

o PN =P(Ny,..., N,) is the joint distribution of the noise variables and
they are jointly independent.
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Structural Equation Model (SEM)

e A structural equation model (SEM) (also called a functional model)
is defined as a tuple S := (S,PN), where S = (51, ..., Sp) is a
collection of p equations

Sj : )(_, = f)‘(PAj, NJ), j: 1, ey P

e PA; C{Xi,...,Xp}/{X;} are called parents of X;

o PN =P(Ny, ..., N,) is the joint distribution of the noise variables and
they are jointly independent.
o Example 1:

X1 =A(M), Xo=h(X1,Ny), Xz=1(Xz,Ns)
X —=Xo —= X3
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Structural Equation Model (SEM)

o A structural equation model (SEM) (also called a functional model)
is defined as a tuple S := (S,PN), where S = (51, ..., Sp) is a
collection of p equations

Sj : )<J = fj-'(PAj, NJ), _] = 1, ey P

e PA; C {Xi,...,Xp}/{X;} are called parents of X;

o PN =P(Ny, ..., N,) is the joint distribution of the noise variables and
they are jointly independent.
o Example 1:

X1 =A(M), Xo=h(X,Ny), Xz=1(X,Ns)

X1—=Xo—=X3
o Example 2:

X=N, Y=4X+N,, XY
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Intervention

o Intervention Distribution: Consider PX that has been generated
from an SEM S := (S,PV). We can then replace one (or more)
structural equations (without generating cycles in the graph) and
obtain a new SEM S.
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Intervention

o Intervention Distribution: Consider PX that has been generated
from an SEM S := (S,PV). We can then replace one (or more)
structural equations (without generating cycles in the graph) and
obtain a new SEM S.

@ The distributions in the new SEM is intervention distributions and the
variables whose structural equation have replaced have been

“intervened on".
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Intervention

o Intervention Distribution: Consider PX that has been generated
from an SEM S := (S,PV). We can then replace one (or more)
structural equations (without generating cycles in the graph) and
obtain a new SEM S.

@ The distributions in the new SEM is intervention distributions and the
variables whose structural equation have replaced have been
“intervened on".

@ Intervention on variable Xj:

PX = P (X|do(X; = F (P4, 1)) )
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Intervention

o Intervention Distribution: Consider PX that has been generated
from an SEM S := (S,PV). We can then replace one (or more)
structural equations (without generating cycles in the graph) and
obtain a new SEM S.

@ The distributions in the new SEM is intervention distributions and the
variables whose structural equation have replaced have been
“intervened on".

@ Intervention on variable X;:

P = Ps(X|do(X; = (P;, 7)) )

o Perfect intervention: when f:(PA;, N;) puts a point mass on a real
value a, we simply write Ps(X|do(X; = a)).
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Example: A patient with poor eyesight comes to the hospital and

goes blind (B = 1) after the doctor suggests the treatment T = 1.

Let us assume

T =Ny
B=T.Ng +(1 — T)(]. — NB)

where Ng ~ Ber(0.01).

In this example, we have
Ps(B =0|do(T = 1)) =0.99

Ps(B = 0|do(T = 0)) = 0.01
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o Another Example: Suppose that P(X, Y) is induced by a structural
equation model &

X=N, Y=3X+N, = XY
with Ny, N, ~ A/(0,1). The

P(Y) = N(0,10)
P(Y|do(X = 2)) = N(6,1), P(Y|do(X =1.2)) =N(3.6,1)
P(X|do(Y = 2)) = P(X|do(Y = 1.2)) = N'(0,1) = P(X)
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e Another Example: Suppose that P(X, Y) is induced by a structural
equation model &

X=Ny, Y=3X+N,, = XY
with Ny, N, ~ A/(0,1). The

P(Y) = N(0,10)
P(Y|do(X = 2)) = N(6,1), P(Y|do(X =1.2)) = N(3.6,1)
P(X|do(Y = 2)) = P(X|do(Y = 1.2)) = N'(0,1) = P(X)

@ Intervening on X changes the distribution of Y but not the other way
around.
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Total causal effect

e Total causal effect: Given an SEM S, there is a (total) causal effect
from X; to X; iff

Xi ALX; in Ps(X1, ..., Xp|do(X; = Ny))

for some variable N,.

55123



Total causal effect

o Total causal effect: Given an SEM S, there is a (total) causal effect
from X; to X; iff

Xi JLX; in Ps(Xq, ..., Xp|do(X; = Ny))

for some variable N,.

o Example: Consider the following SEM,
X =N, Y=3X+N,.

When we replace the structural equation for X with X = N, the
dependency between X and Y does not vanish. Thus, there is a causal
effect from X to Y.
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Proposition:

If there is no directed path from X to Y, then there is no causal effect.

o Example: Consider the following SEM

A=N,, B=A®N,, C=BadN,,
A—B—C
where N, >~ Ber(1/2), Ny ~ Ber(1/3) and N, ~ Ber(1/20) are
independent. @ denotes addition modulo 2 (i.e. 1® 1 =0)
e Ps(B|do(C =1)) =P(B)
o Ps(B|do(A=1)) = Ber(2/3) # P(B)

@ There are causal effects from A to B and A to C.
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Counterfactual

o conterfactual SEM: Consider an SEM S := (S, P") over nodes X.
Given some observations x, we define a counterfactual SEM by
replacing the distribution of noise variables:

Sx=x = (Sa]P)g,X:X)
° ]P)gX:X = ng(:)(

@ The new set of noises need not be independent.
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Counterfactual

o conterfactual SEM: Consider an SEM S := (S,P") over nodes X.
Given some observations x, we define a counterfactual SEM by
replacing the distribution of noise variables:

SX:X = (57 IPJg'l,X:x)

N _ pNX=x
o Psx_x=Ps

@ The new set of noises need not be independent.

o Counterfactual statements can be seen as do-statements in the new
conterfactual SEM.
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Counterfactual

o Example: Consider the following SEM
X=Ne, Y=X>+Ny, Z=2Y+X+N,

where Ny, N,, N, ~ N(0,1).
@ Suppose we observe (x,y,z) = (1,2,4)
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Counterfactual

o Example: Consider the following SEM
X=Ne, Y=X>+Ny, Z=2Y+X+N,

where Ny, Ny, N, ~ N(0,1).
@ Suppose we observe (x,y,z) = (1,2,4)
° ]P’g‘(l’“) puts a point mass on (N, Ny, N,;) =(1,1,-1).
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Counterfactual

o Example: Consider the following SEM
X =Ny, Y=X>+Ny, Z=2Y+X+N,

where Ny, N, N, ~ N(0,1).
@ Suppose we observe (x,y,z) = (1,2,4)
° Pg‘(l’z’“ puts a point mass on (N, Ny, N,;) =(1,1,-1).
@ counterfactual statement: “Z would have been 11, had X been 2."

219o(X=2) is 3 point mass on 11.

means PS,(1,2,4)
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Counterfactual

Example: Consider the following SEM

X =Ny, Y=X>+Ny, Z=2Y+X+N,

where Ny, N, N, ~ N(0,1).
Suppose we observe (x, y,z) = (1,2,4)
° Pg‘(l’z"” puts a point mass on (N, Ny, N,;) =(1,1,-1).

counterfactual statement: “Z would have been 11, had X been 2."

means P¢G00? is a point mass on 11.
@ “Y would have been 5, had X been 2."
@ “Z would have been 11, had Y been 5."
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Graphical model

@ Graphical models can encode a set of conditional dependence and
independence of variables.

@ Markov property enables us to read off Cl from a graph.

o Faithfulness allows us to read off graphical property (d-separation)
from Cl.
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Graphical model

@ Graphical models can encode a set of conditional dependence and
independence of variables.

@ Markov property enables us to read off Cl from a graph.

o Faithfulness allows us to read off graphical property (d-separation)
from Cl.

o Example: P(Xy, X3, X3, Xy) = P(X1)P(X2| X1 )P(X3] X1, X2)P(Xa| X3)
X1
/ \

Xa

X X;
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Graphical model

@ Graphical models can encode a set of conditional dependence and
independence of variables.

Markov property enables us to read off Cl from a graph.

Faithfulness allows us to read off graphical property (d-separation)
from Cl.

Example: P(Xl, X2, X3, X4) = IPJ()Q)IP)(Xg|)<1)]P)()<3|)<17 X2)]P(X4|X3)
X1

TN

Xa

X2

X3

Cl: X4J_|_X1|X3, X4J_|_X2|X3.
From the graph: X; and X4 are “d-separated” by X3.
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@ Three nodes are called an immorality or a v-structure if one node is a child
of the two others that themselves are not adjacent.

ik

j is called a collider.
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@ Three nodes are called an immorality or a v-structure if one node is a child
of the two others that themselves are not adjacent.

i—j<+ k
j is called a collider.

@ Blocked path: In a DAG, a path between i; and i, is blocked by a set S
(with neither iy nor i, in S) whenever there is a node ik, such that one of
the following happens:

o ik € S and ik—l — ik — ik+1 or ik—l < I'k < I'k+1 or ik—l < ik — ik+1.
©Q ik_1 — ix < ixr1 and neither i, nor any of its descendants is in S.
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@ Three nodes are called an immorality or a v-structure if one node is a child
of the two others that themselves are not adjacent.
i—j<« k
j is called a collider.

@ Blocked path: In a DAG, a path between i; and i, is blocked by a set S

(with neither iy nor i, in S) whenever there is a node i, such that one of
the following happens:

o ix € S and ik_1 —> I — ik+1 or y_1  Ix + I'k+1 or i_1 < Ik — I'k+1.
©Q ik—1 — ix < ix+1 and neither i, nor any of its descendants is in S.

@ D-separation: Two disjoint subsets of vertices A and B are d-separated by

a third (also disjoint) subset S if every path between nodes in A and B is
blocked by S.
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@ Three nodes are called an immorality or a v-structure if one node is a child
of the two others that themselves are not adjacent.
i—j<+ k
j is called a collider.

@ Blocked path: In a DAG, a path between i; and i, is blocked by a set S
(with neither iy nor i, in S) whenever there is a node ik, such that one of
the following happens:

Q@ icSand i1 — ik — ik+1 or ip_1 ¢ Iy ik+1 or ix_1 < Ix — ik+1.
©Q ik_1 — ix < ixr1 and neither i, nor any of its descendants is in S.

@ D-separation: Two disjoint subsets of vertices A and B are d-separated by
a third (also disjoint) subset S if every path between nodes in A and B is
blocked by S.

@ Unblocked path: a path can be traced without traversing colliding (head to
head) arrows.
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Three nodes are called an immorality or a v-structure if one node is a child
of the two others that themselves are not adjacent.

i—j+ k
j is called a collider.
Blocked path: In a DAG, a path between i; and i, is blocked by a set S

(with neither j; nor i, in S) whenever there is a node i, such that one of
the following happens:
o ik € S and I.k,1 — ik — ik+1 or I.k,1 — I'k < I'k+1 or I.k,1 < ik — I'k+1.
©Q ik—1 — ix < ix+1 and neither i, nor any of its descendants is in S.
D-separation: Two disjoint subsets of vertices A and B are d-separated by

a third (also disjoint) subset S if every path between nodes in A and B is
blocked by S.

Unblocked path: a path can be traced without traversing colliding (head to
head) arrows.

Given a DAG G, we obtain the undirected moralized graph G™" of G by
connecting the parents of each node and removing the directions of the
edges. 71/123



Markov Properties

e Markov property Given a DAG G and a joint distribution PX, this
distribution is said to satisfy

o the global Markov property with respect to the DAG G if
A, B d-separated by C = Al B|C

for all disjoint sets A, B, C.
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Markov Properties

e Markov property Given a DAG G and a joint distribution PX, this
distribution is said to satisfy

o the global Markov property with respect to the DAG G if
A, B d-separated by C = ALl B|C

for all disjoint sets A, B, C.
o the local Markov property with respect to the DAG G if each variable
is independent of its non-descendants given its parents
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Markov Properties

e Markov property Given a DAG G and a joint distribution PX, this
distribution is said to satisfy

o the global Markov property with respect to the DAG G if
A, B d-separated by C = Al B|C

for all disjoint sets A, B, C.

o the local Markov property with respect to the DAG G if each variable
is independent of its non-descendants given its parents

e the Markov factorization property with respect to the DAG G if

P
P(X1, ..., Xp) = [ [P(Xi| Xpa))
i=1

where Xpa, denotes the parents of node i in DAG G.
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Markov Properties

e Markov property Given a DAG G and a joint distribution PX, this
distribution is said to satisfy

o the global Markov property with respect to the DAG G if
A, B d-separated by C = Al B|C

for all disjoint sets A, B, C.

o the local Markov property with respect to the DAG G if each variable
is independent of its non-descendants given its parents

e the Markov factorization property with respect to the DAG G if

P
P(X1, ..., Xp) = [ [P(Xi| Xpa))
i=1

where Xpa, denotes the parents of node i in DAG G.
e For distributions with positive continuous densities, the global and local
property are equivalent.
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o Example: In the following DAG, we have

/\
\/

@ X5 and X3 are d-separated by X1, = X21|_X3\X1
@ Xi and Xy are d-separated by { Xz, X3}, = XL Xa|Xo, X3
o P(X) = P(X3)P(X1|X3)P(X2| X1)P(Xa| X2, X3)
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Markov Equivalence Class

e Markov equivalence class of graphs We denote by M(G) the set
of distributions that are Markov with respect to G:

M(G) := {P: satisfies the global (or local) Markov property w.r.t.G}

e Two DAGs G; and G, are Markov equivalent if M(Gy) = M(G).
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Markov Equivalence Class

e Markov equivalence class of graphs We denote by M(G) the set
of distributions that are Markov with respect to G:

M(G) := {P: satisfies the global (or local) Markov property w.r.t.G}

e Two DAGs G and G are Markov equivalent if M(G1) = M(G).

Theorem [Verma and Pearl, 1991]

Two DAGs are Markov equivalent if and only if they have the same
skeleton and the same immoralities.
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o Example: Next two DAGs are Markov equivalent.

X1 Xa

X2 X3 X5

X X
M / \ %, / \ %
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P number of DAGs with p nodes

1 1

2 3

3 25

4 543

5 29281

6 3781503

7 1138779265

8 783702329343

9 1213442454842881

10 4175098976430598143

11 31603459396418917607425

12 521939651343829405020504063

13 18676600744432035186664816926721

14 1439428141044398334941790719839535103

15 237725265553410354992180218286376719253505

16 83756670773733320287699303047996412235223138303

17 62707921196923889899446452602494921906963551482675201

18 99421195322159515895228914592354524516555026878588305014783
19 332771901227107591736177573311261125883583076258421902583546773505
20 | 2344880451051088988152559855229099188899081192234291298795803236068491263
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Markov Blanket

o Consider a graph G = (V, E) and a target node Y . The Markov
blanket of Y is the smallest set M such that

Y d-sep. V\ ({Y}U M) given M.
o If PX is Markov w.r.t. G, then

YILV\N{Y}IuM)M
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Markov Blanket

e Consider a graph G = (V, E) and a target node Y . The Markov
blanket of Y is the smallest set M such that

Y d-sep. V\ ({Y} U M) given M.
o If PX is Markov w.r.t. G, then

YILV\N{YIUM)M

Markov Blanket

The Markov blanket of a node is the set of nodes consisting of its parents,
its children, and any other parents of its children.
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o Example:

Y
/ \R/l
e Markov blanket of Z is Mz := {T, R, Y}, because Z is d-sep. from

{X, W} by Mz.
@ What is the Markov blanket of R?
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Faithfulness

o Definition: PX is said to be faithful to the DAG G if
Al B|C = A, B d-sep. by C

for all disjoint sets A, B, C.
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Faithfulness

o Definition: PX is said to be faithful to the DAG G if
Al B|C = A, B d-sep. by C

for all disjoint sets A, B, C.

@ Markov assumption enables us to read off independence from a graph.
Faithfulness allows us to infer dependencies from the graph?.

1p:> q = q="p
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Faithfulness

o Definition: PX is said to be faithful to the DAG G if
Al B|C = A, B d-sep. by C

for all disjoint sets A, B, C.

@ Markov assumption enables us to read off independence from a graph.
Faithfulness allows us to infer dependencies from the graph!.

@ A distribution satisfies causal minimality with respect to G if it is
Markov with respect to G, but not to any proper subgraph of G.

1p:> q = q="p
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o Example: Consider the following SEM,
X =Nx, Y=aX+ Ny, Z=>bY +cX+ Ng,

where Nx ~ N(0,0%), Ny ~ N(0,07), and Nz ~ N(0,02).

G1: Y
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o Example: Consider the following SEM,
X=Nx, Y=aX+ Ny, Z=>bY +cX+ Ng,

where Nx ~ N(0,0%2), Ny ~ N(0,02), and Nz ~ N(0,02).

Gy : Y

e if ab+ ¢ =0, the distribution is not faithful with respect to Gy since
we obtain X 1 .Z

E[(X — ux)(Z — pz)] = E[XZ] = (ac + b)E[X?] = 0
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o Example: Consider the following SEM,
X=~Nx, Y=3X+bZ+Ny, Z=Nyg,

where Nx ~ N(0,62), Ny ~ N(0,62), and Nz ~ N(0,62).

;5 X
/B

GQZ Y
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o Example: Consider the following SEM,
X=~Nx, Y=3X+bZ+Ny, Z=~Nyg,

where Nx ~ N(0,62), Ny ~ N(0,62), and Nz ~ N(0,62).

GQZ Y

@ If we choose

5§<:O'§<, 3=a, 5%:b20%,—|—0%
b= (bo3})/(b0% + 0%), 6% = 0% — (b*0%y)/(b*0% + 0%)
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o Example: Consider the following SEM,
X=~Nx, Y=3X+bZ+ Ny, Z=Ny,

where Ny ~ N(0,62), Ny ~ N(0,67), and Nz ~ N(0,62).

G2 . Y
o If we choose

(5§< :0')2<, i=a, 5% = bzaf/—i—ag
b= (bo})/(b°0% + 0%), 6% = 0% — (b0%)/(b°0% + 0%)

@ then both SEMs will lead to the same covariance matrix and the same
observational distribution.

2 2
UX2 2 gox 2 02
Y = |aockx a‘ox+oy boy,

0 ba%, b20%, + O’%
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Example: Consider the following SEM,
X=~Nx, Y=3X+bZ+ Ny, Z=Ny,

where Nx ~ N(0,62), Ny ~ N(0,62), and Nz ~ N(0,62).

s X
/E

G2 . Y
If we choose
5§< zoi, i=a, 5% = b20§(+0§
b= (bo})/(b°0% + 0%), 6% = 0% — (b0%)/(b°0% + 0%)
then both SEMs will lead to the same covariance matrix and the same
observational distribution.

o ao% 0
_ 2 2 2 2 2
Y = |aockx a‘ox+oy boy,
0 ba%, b20%, + O’%

However, the distribution is faithful with respect to G if 4,5 # 0 and
all 62 > 0.
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@ Consider an SEM S,
X; = £(PALN))

@ Due to the Markov property, we have

p
Ps(X) = [[P(X|Xpa;)
i=1

93/123



@ Consider an SEM S,
X; = £(PALN;)

@ Due to the Markov property, we have

p
Ps(X) = [[P(X|Xpa;)
i=1

o Now consider the SEM § after do(Xi = Ni) with Ny ~ B(Xk),

PS:dO(Xk=Nk)(X) = B(Xk) HP()(/"XPAJ')
J#k
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@ Consider an SEM S,
Xj = fi(PA;, Nj)

@ Due to the Markov property, we have

P

Ps(X) = [T P(Xj|1Xpa,)

i=1

o Now consider the SEM § after do(Xi = Ni) with Ny ~ B(X),
]P)S,do(Xk:I\?k)(X) = p(Xk) H IP)(XJ\XPAJ-)
J#k

@ Perfect intervention: do(Xy = a)

[T P(Xj| Xpa;) X = a

Ps do(x=a)(X) = { 0 Otherwise (1)
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o Example: Consider the Simpson’s paradox in which all variables are
binary.

o T: Treatment, Z: size of stone, R: recovery

Patients with Patients with
small stones large stones

78% (273/350)  93% (81/87)  73% (192/263)

Overall

Treatment A:
Open surgery

Treatment B: 83% (289/350) 87% (234/270)  69% (55/80)

Percutaneous nephrolithotomy

@ We are interested in

Ps(R = 1|do(T = A))
Ps(R = 1|do(T = B))
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@ We have

Ps(R = 1|do(T = A)) ZPSdoTA R=1,Z=2T=A)
—ZPS do(T= A = 1|Z—Z T = A)Ps do(T= A)(Z:Z7T:A)
:Z}P’S(R:1|T:A,Z:z)}P’S(Z:z|do(T:A))

1
=Y Ps(R=1T=AZ=2Ps(Z=2)
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@ We have

Ps(R = 1|do(T = A)) ZIPSdoTA R=1,Z=2T=A)
—ZHDSdo(T A(R=1Z=2T=APs yo7=n)(Z =2, T = A)
:ZIP’S(R:1|T:A,Z:z)IP’5(Z:z|do(T:A))

1
=Y Ps(R=1T=AZ=2Ps(Z=2z)

@ The last step uses the perfect intervention formula in (1)
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@ We have

1
PS(R = ]_|do(T = A)) = ZPS,dO(T:A)(R = 17Z = Z7 T — A)
z=0

—Z]P’s do(T=A)(R=1|Z = 2, T = A)Ps go(1=4)(£ = 2, T = A)
:ZIP’S(R:1|T:A,Z:z)IP’s(Z:z|do(T:A))

= ZI:IPS(R: UT =A,Z=2)Ps(Z = 2)

@ The last step uses the perfect intervention formula in (1)
@ Using the values in the table, we obtain

37 33

357 343
Ps(R=1 T=B))=~ — — = 2
s(R = 1|do( )~ 0.87.255 +0.69.~ = 0.78

o But Ps(R=1|T = A) = 0.78,
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Instrumental variable

@ A major complication is the possibility of inconsistent parameter
estimation due to the existence of hidden confounders.
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Instrumental variable

@ A major complication is the possibility of inconsistent parameter
estimation due to the existence of hidden confounders.

@ The instrumental variables method provides a way to nonetheless
obtain consistent parameter estimates.
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Instrumental variable

@ A major complication is the possibility of inconsistent parameter
estimation due to the existence of hidden confounders.

@ The instrumental variables method provides a way to nonetheless
obtain consistent parameter estimates.

@ We explain this method through a simple example.
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Instrumental variable

@ A major complication is the possibility of inconsistent parameter
estimation due to the existence of hidden confounders.

@ The instrumental variables method provides a way to nonetheless
obtain consistent parameter estimates.

@ We explain this method through a simple example.

o Example: Consider the following causal structure in which A is a
hidden confounder.
2
S————>Y
Y(log earning) = a + p S(Schooling years) + ~ A(Individual ability) + Ny (noise)
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Instrumental variable

@ A major complication is the possibility of inconsistent parameter
estimation due to the existence of hidden confounders.

@ The instrumental variables method provides a way to nonetheless
obtain consistent parameter estimates.
@ We explain this method through a simple example.
o Example: Consider the following causal structure in which A is a
hidden confounder.
A
RN
_—
S 5 Y
Y(log earning) = o + p S(Schooling years) + ~ A(Individual ability) + Ny (noise)
@ Interested in finding the influence of S on Y, i.e., finding p.

@ No unbiased estimator exists for p:
~._ Cov(Y,S) _ _ Cov(Y=o+pS+yA+Ny,S) + Cov(A,S)
- Var(S) T Var(S) =pTY Var(S) -
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@ Now, consider the following graph in which

o A is a hidden confounder.
e Z is a variable such that

Cov(Z,S) # O(First stage restriction criterion)
Cov(Z,vA+ Ny) = 0(Exclusion Restriction).

A

S
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@ Now, consider the following graph in which

o A s a hidden confounder.
e Z is a variable such that

Cov(Z,S) # O(First stage restriction criterion)
Cov(Z,v7A+ Ny) = 0(Exclusion Restriction).

A
é 2
5 S/p\y

Z

@ Interested in finding p.
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@ Now, consider the following graph in which

o A s a hidden confounder.
e Z is a variable such that

Cov(Z,S) # O(First stage restriction criterion)

Cov(Z,vA+ Ny) = 0(Exclusion Restriction).

A
0 2
Z—; s/p\v

@ Interested in finding p.

@ In this model, variable Z (also called Instrumental Variable ) can help
to estimate p.
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@ In this model, we have

S=pBZ+0A+ Ns,
Y =a+pS+~vA+ Ny.
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@ In this model, we have
S=pZ+6A+ Ns,
Y =a+pS+~vA+ Ny.

Cov(Y,2)
Var(Z) *

o First, estimate pf: pg:=
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@ In this model, we have

S:ﬁZ+(5A+N5,
Y =a+pS+~vA+ Ny.

o First, estimate p3: B := C‘(LE(YZ*)Z)
@ Second, estimate 3: B:= C"V:f(szf).
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In this model, we have

S=BZ+0A+ Ns,

Y =a+pS+~yA+ Ny.

. . . 5. Cov(Y,Z
First, estimate p3: pB = AG2).

H . Iy Cov(S,Z
Second, estimate 3: §:= %5
Finally, estimate p: 5= 22 = et

This is an unbiased estimator because

Cov(Y,Z) Cov(a+pS+~vyA+Ny,Z)

Cov(yA+ Ny, Z)

Cov(S,Z) Cov(S,Z)

)

Cov(S,Z)

111/123



In this model, we have

S=PpBZ+ A+ Ns,
Y =a+pS+~vA+ Ny.

H H . 5 Cov(Y,Z
First, estimate pB3: pB:= %
. . A Cov(5,Z
Second, estimate 8: 3 := f/af(z))
Finally, estimate p: 7:= % = 2.

This is an unbiased estimator because

Cov(Y,Z) Cov(a+pS+~vA+ Ny,Z)

Cov(yA+ Ny, Z)

Cov(S, 2Z) Cov(S, 2Z)

)

According to the restrictions:

Cov(yA+ Ny, Z)

=0
Cov(S, 2)

Therefore, p = p.

Cov(S,2Z)
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Learning Causal Bayes Nets

@ The goal is to infer the graph given a set of conditional dependence
and independence tests.

@ SGS Algorithm: developed by Sprites, Glymour and Scheives.
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Learning Causal Bayes Nets

@ The goal is to infer the graph given a set of conditional dependence
and independence tests.

@ SGS Algorithm: developed by Sprites, Glymour and Scheives.

@ Consists of two phases

© Learning the skeleton
@ Learning the orientations
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Learning Causal Bayes Nets

@ The goal is to infer the graph given a set of conditional dependence
and independence tests.

@ SGS Algorithm: developed by Sprites, Glymour and Scheives.

@ Consists of two phases

@ Learning the skeleton
@ Learning the orientations

@ SGS is based on two main assumptions

o No hidden confounders
e Graph is a DAG
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Estimation of skeleton

@ It is based on the following result.

- Two nodes X, Y in a DAG (V, E) are adjacent iff they cannot be
d-separated by any subset S C V' \ {X, Y}.

- If two nodes X, Y in a DAG (V, E) are not adjacent, then they are
d-separated by either PAx or PAy.
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Estimation of skeleton

@ It is based on the following result.

- Two nodes X, Y in a DAG (V, E) are adjacent iff they cannot be
d-separated by any subset S C V' \ {X, Y}.

- If two nodes X, Y in a DAG (V/, E) are not adjacent, then they are
d-separated by either PAx or PAy.

@ Steps:
© Begin with a complete graph.
@ Use conditional dependence and independence test to eliminate edges
(edge elimination).
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Estimation of skeleton

@ It is based on the following result.

- Two nodes X, Y in a DAG (V, E) are adjacent iff they cannot be
d-separated by any subset S C V' \ {X, Y}.

- If two nodes X, Y in a DAG (V/, E) are not adjacent, then they are
d-separated by either PAx or PAy.

@ Steps:
@ Begin with a complete graph.
@ Use conditional dependence and independence test to eliminate edges
(edge elimination).
@ There are different methods to perform Cl tests, e.g., empirical
methods, kernel-based methods. In general, Cl tests are difficult to
perform in practice.
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Orientation of edges

o Steps

@ Orient the immoralities (or v-structures) in the graph.
- For structure X — Y — Z with no direct edge between X and Z.
- Let S denotes the corresponding d-separation set for X and Z.
- The structure X — Y — Z is an immorality and can be oriented as
X —=>Y<« Zifandonlyif Y £8S.

@ We may be able to orient some further edges using e.g., Meek'’s
orientation rules.
- If there exist a pair A, C not directly connected and exists node B
such that A — B — C, then, we can orient the 2nd arrow from B to C.
- Avoid cycle.
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o Example:

. True graph

Edge elimination \‘

—
O ©

v-structures
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o Edge Elimination

o (zero Orders) Edge AE removed due to unshielded collider.
(1st Orders) ABDF: A d-sep. F by D, Edge AF eliminated.
o BDF: B d-sep. F by D, Edge BF eliminated.
o CBDF: C d-sep. F by D, Edge CF eliminated.
o ECBDF: E d-sep. F by D, Edge EF eliminated.
o DBA: A d-sep. D by B, Edge DA eliminated.
o
o
o

DBC: A d-sep. C by B, Edge DC eliminated.
DBCE: D d-sep. E by B, Edge ED eliminated.
(2nd Orders) BACE: B d-sep. E by {A, C}, Edge BE eliminated.
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o Edge Orientation

o (Statistical Orientation) AILE, A ALC, E ALC,A ALE|C = ACE is a
v-structure.
(Logical Orientation) BCE: C — B, otherwise unshielded collider.
ABC: A — B, otherwise cycle.
ABD: B — D, otherwise unshielded collider.
BDF: D — F, otherwise unshielded collider.
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The End
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