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Motivation

We often are interested in discovering causation vs correlation.

Example: [Chocolate - Nobel Prizes] Messerli [2012] reports that there is
a significant correlation between a country’s chocolate consumption (per
capita) and the number of Nobel prizes awarded to its citizens.
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Figure 1.1: The left figure is slightly modified from [Messerli, 2012], it shows a significant
correlation between a country’s consumption of chocolate and the number of Nobel prizes
(averaged per person). The right figure shows a similar result for co�ee consumption; the
data are based on [Wikipedia, 2013b,a].

Figure 1.2: Two online articles (downloaded from confectionarynews.com and forbes.com on
Jan 29th 2013) drawing causal conclusions from the observed correlation between chocolate
consumption and Nobel prizes, see Figure 1.1.
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We must be careful with drawing conclusions like “Eating chocolate
produces Nobel prize” or “Geniuses are more likely to eat lots of
chocolate.”
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We must be careful with drawing conclusions like “Eating chocolate
produces Nobel prize” or “Geniuses are more likely to eat lots of
chocolate.”

Correlation does not imply causation!
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Application areas include:

Computational Neuroscience: Advances in recording technologies
have given neuroscience researchers access to large amounts of data,
e.g., individual recordings of neurons in di↵erent parts of the brain.

6 / 123



Application areas include:

Computational Neuroscience: Advances in recording technologies
have given neuroscience researchers access to large amounts of data,
e.g., individual recordings of neurons in di↵erent parts of the brain.

28 J Comput Neurosci (2011) 30:17–44

consistency guarantees (Barron and Cover 1991).
In particular, under the assumption that λ (i∥Fi) ∈
GLM (h)—which means that θ0 ∈ #(J0, K0), for some
J0 and K0, then it can be shown that an appropriately
designed estimate θ̂ → θ0 a.s.. Specifically, MDL se-
lects the ( Ĵ, K̂) and θ̂ ∈ #( Ĵ, K̂) according to
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log n

θ̂ = θ̂
(
Ĵ, K̂

)
(37)

As K is the number of extrinsic parameters, if K̂ = 0,
then we say that no causal inf luence was detected, since
Ĥ(Y||X) = Ĥ(Y) which implies that Î(X → Y) = 0.
Thus, to determine whether there is a detected causal
influence or not does not require computation of the
directed information; only the K̂ from the best-fitting
model is necessary. If K̂ = 0, there is no detected
influence (Î(X → Y) = 0). If K̂ > 0, there is a detected
influence (Î(X → Y) > 0).

Although one can identify whether there is a de-
tected causal influence without computing the directed
information, the extent of an influence cannot be deter-
mined by the GLM model alone. Directed information
considers both the model and the data to determine
the influence. An example which illustrates this point
is as follows. Let A and B be two neurons, such that
whenever B spikes, A will spike with probability 1
within each of the next 12 ms except when A has just
fired (refractory period). Let A have a large average
spiking rate, such as one spike per 10 ms, and let B have
a very low average spiking rate, such as one spike per
second (see Fig. 3).

The best fitting GLM model (provided the data
recording is sufficiently long) of neuron A using neu-
ron B as B as an extrinsic process will have K̂ ≈ 12
and {β1, · · · , βK̂} large and Thus, it would seem, from
the GLM model alone, that B strongly influences A.
However, since there are few instances where B spikes,
few of A’s spikes are caused by B’s, and so B will
have a small, causal influence influence on A. If B has
a much larger firing rate, however, then many more
of A’s spikes could statistically be explained by B’s
spikes (if the β parameters remain the same), and thus

(a)

(b)

Fig. 3 Spiking activity of neurons A (top) and B (bottom)

B would have a larger, causal influence. Changes in
the data, with a fixed model, can result in changes in
the extent of the influence. Thus, directed information,
which considers both, is able to measure the extent of
the influence, which the model alone cannot.

5.4 The proposed estimation procedure

Under the Assumptions 1–3, we provide the following
consistent estimation procedure:

1. Find Ĵ, K̂, and θ̂ according to the MDL procedure
Eq. (37).

2. Calculate Ĥ(Y∥X) according to Eq. (36) using the
estimated parameter values θ̂ ∈ #( Ĵ, K̂).

3. Compute an estimate for the unconditional entropy
rate Ĥ(Y) using a well-established entropy estima-
tor (such as Lempel-Ziv ’77 (Ziv and Lempel 1977)
or the BWT based estimator (Cai et al. 2004)).

4. Calculate the directed information rate estimate

Î(X → Y) � Ĥ(Y) − Ĥ(Y||X)

Theorem 2 If Assumptions 1, 2, and 3 hold, then

Î(X → Y)
a.s.→ I(X → Y) (38)

Proof

1. If Assumptions 1–3 hold, then the MDL proce-
dure will identify the “true” parameter values θ ∈
#(J, K) (Barron and Cover 1991): Ĵ → J a.s., K̂ →
K a.s., and θ̂ → θ a.s..

2. Note that since θ̂ → θ a.s., from the continuity of
gθ , Ĥ(Y∥X) specified above satisfies Ĥ(Y∥X) →
H(Y||X) a.s. by virtue of Theorem 1.

J Comput Neurosci (2011) 30:17–44 39

Fig. 15 Diagram of statistically estimated causal relationships for
the 37 neurons used from the subset of electrode recordings in
the arm area of a monkey’s primary motor cortex (MI) from
Wu and Hatsopoulos (2006). Each box with a number indicates
a different neuron. The relative positions of the neurons in the
diagram correspond to the relative positions of the electrodes
on the electrode array where the neurons were detected. An
arrow from a box labelled X to a box labelled Y depicts that
a statistically causal relationship was detected from X to Y (in
particular, K̂ > 0). Absence of an arrow from X to Y depicts
that the procedure detected no statistically causal relationship
from X to Y (K̂ = 0). The transparent diagonal arrow represents
a ‘dominant’ orientation of the detected causal influences. This
might correspond to the direction of propagating local field
potential waves discussed in Rubino et al. (2006)

Absence of an arrow between an ordered pair (X,Y)
depicts that the estimation procedure detected that
there was no statistically causal influence (K̂ = 0). The
normalized directed information estimates are not in-
cluded in the graph for clarity purposes. Most of the
normalized directed information estimates were on the

Fig. 16 Diagram depicting the induced subgraph of neurons 1, 9,
and 4. Both 1 and 9 have pairwise influences into 4, one of which
might be due to an indirect influence. A question mark is drawn
adjacent the arrows in question

Fig. 17 The resulting
subgraph after computing
causally conditioned directed
information estimates.
Î(1 → 4||9) > 0 and
Î(9 → 4||1) = 0, so 9→4 was
removed, and 1→4 was kept

order of 10−2 to 10−3. Note that the causal influences
detected in this data set were not as large as those
detected in the simulated data set. The simulated data
set was constructed to have large statistically causal
influences, whereas neurons recorded from in brain
tissue could have many neighboring neurons exciting or
inhibiting it (thus the influence from any one neuron
could be small). It is also possible that the neurons
which were detected to have a statistically causal rela-
tionship do not directly communicate with each other,
but only do so through other neurons that might not be
present in the data set.

After the pairwise directed information estimates
were computed, a small number of nodes were se-
lected which had few pairwise influences and whose
influences were ambiguous. These nodes and their re-
spective influences were then examined using causally
conditioned directed information, to determine which
of the influences were direct. The subsets examined
include {1, 4, 9}, {3, 10, 13}, {5, 13, 35}, {8, 10, 27}, {13,
18, 25}, and {32, 33, 36}. For each of the subsets {1, 4, 9},
{3, 10, 13}, and {13, 18, 25}, one of the causally con-
ditioned directed information estimates were 0, and
thus one of the estimated of the estimated pairwise
influences was removed from each. See Figs. 16, 17,
18, 19, 20 and 21. For the other subsets, all of the
causally conditioned directed information estimates
were greater than 0, and so they were kept.

A strong structure can be seen in the graph (Fig. 15).
Some neurons have many incoming and outgoing con-
nections, such as 1, 8, and 12. Some have more incoming
than outgoing, such as 8, and 18. Some have very few, if
any, incoming or outgoing connections. Note that this
is only suggestive of the functional connectivity of the
neurons, and only amongst those used in the analysis.

Fig. 18 Diagram depicting
the induced subgraph of
neurons 3, 10, and 13. Both 3
and 13 have pairwise
influences into 10, one of
which might be due to an
indirect influence. A question
mark is drawn adjacent to the
arrows in question
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information, the extent of an influence cannot be deter-
mined by the GLM model alone. Directed information
considers both the model and the data to determine
the influence. An example which illustrates this point
is as follows. Let A and B be two neurons, such that
whenever B spikes, A will spike with probability 1
within each of the next 12 ms except when A has just
fired (refractory period). Let A have a large average
spiking rate, such as one spike per 10 ms, and let B have
a very low average spiking rate, such as one spike per
second (see Fig. 3).

The best fitting GLM model (provided the data
recording is sufficiently long) of neuron A using neu-
ron B as B as an extrinsic process will have K̂ ≈ 12
and {β1, · · · , βK̂} large and Thus, it would seem, from
the GLM model alone, that B strongly influences A.
However, since there are few instances where B spikes,
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spikes (if the β parameters remain the same), and thus

(a)

(b)

Fig. 3 Spiking activity of neurons A (top) and B (bottom)

B would have a larger, causal influence. Changes in
the data, with a fixed model, can result in changes in
the extent of the influence. Thus, directed information,
which considers both, is able to measure the extent of
the influence, which the model alone cannot.

5.4 The proposed estimation procedure

Under the Assumptions 1–3, we provide the following
consistent estimation procedure:

1. Find Ĵ, K̂, and θ̂ according to the MDL procedure
Eq. (37).

2. Calculate Ĥ(Y∥X) according to Eq. (36) using the
estimated parameter values θ̂ ∈ #( Ĵ, K̂).

3. Compute an estimate for the unconditional entropy
rate Ĥ(Y) using a well-established entropy estima-
tor (such as Lempel-Ziv ’77 (Ziv and Lempel 1977)
or the BWT based estimator (Cai et al. 2004)).

4. Calculate the directed information rate estimate
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dure will identify the “true” parameter values θ ∈
#(J, K) (Barron and Cover 1991): Ĵ → J a.s., K̂ →
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gθ , Ĥ(Y∥X) specified above satisfies Ĥ(Y∥X) →
H(Y||X) a.s. by virtue of Theorem 1.
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Fig. 15 Diagram of statistically estimated causal relationships for
the 37 neurons used from the subset of electrode recordings in
the arm area of a monkey’s primary motor cortex (MI) from
Wu and Hatsopoulos (2006). Each box with a number indicates
a different neuron. The relative positions of the neurons in the
diagram correspond to the relative positions of the electrodes
on the electrode array where the neurons were detected. An
arrow from a box labelled X to a box labelled Y depicts that
a statistically causal relationship was detected from X to Y (in
particular, K̂ > 0). Absence of an arrow from X to Y depicts
that the procedure detected no statistically causal relationship
from X to Y (K̂ = 0). The transparent diagonal arrow represents
a ‘dominant’ orientation of the detected causal influences. This
might correspond to the direction of propagating local field
potential waves discussed in Rubino et al. (2006)

Absence of an arrow between an ordered pair (X,Y)
depicts that the estimation procedure detected that
there was no statistically causal influence (K̂ = 0). The
normalized directed information estimates are not in-
cluded in the graph for clarity purposes. Most of the
normalized directed information estimates were on the

Fig. 16 Diagram depicting the induced subgraph of neurons 1, 9,
and 4. Both 1 and 9 have pairwise influences into 4, one of which
might be due to an indirect influence. A question mark is drawn
adjacent the arrows in question

Fig. 17 The resulting
subgraph after computing
causally conditioned directed
information estimates.
Î(1 → 4||9) > 0 and
Î(9 → 4||1) = 0, so 9→4 was
removed, and 1→4 was kept

order of 10−2 to 10−3. Note that the causal influences
detected in this data set were not as large as those
detected in the simulated data set. The simulated data
set was constructed to have large statistically causal
influences, whereas neurons recorded from in brain
tissue could have many neighboring neurons exciting or
inhibiting it (thus the influence from any one neuron
could be small). It is also possible that the neurons
which were detected to have a statistically causal rela-
tionship do not directly communicate with each other,
but only do so through other neurons that might not be
present in the data set.

After the pairwise directed information estimates
were computed, a small number of nodes were se-
lected which had few pairwise influences and whose
influences were ambiguous. These nodes and their re-
spective influences were then examined using causally
conditioned directed information, to determine which
of the influences were direct. The subsets examined
include {1, 4, 9}, {3, 10, 13}, {5, 13, 35}, {8, 10, 27}, {13,
18, 25}, and {32, 33, 36}. For each of the subsets {1, 4, 9},
{3, 10, 13}, and {13, 18, 25}, one of the causally con-
ditioned directed information estimates were 0, and
thus one of the estimated of the estimated pairwise
influences was removed from each. See Figs. 16, 17,
18, 19, 20 and 21. For the other subsets, all of the
causally conditioned directed information estimates
were greater than 0, and so they were kept.

A strong structure can be seen in the graph (Fig. 15).
Some neurons have many incoming and outgoing con-
nections, such as 1, 8, and 12. Some have more incoming
than outgoing, such as 8, and 18. Some have very few, if
any, incoming or outgoing connections. Note that this
is only suggestive of the functional connectivity of the
neurons, and only amongst those used in the analysis.

Fig. 18 Diagram depicting
the induced subgraph of
neurons 3, 10, and 13. Both 3
and 13 have pairwise
influences into 10, one of
which might be due to an
indirect influence. A question
mark is drawn adjacent to the
arrows in question

Could we understand firing of which neurons causes others to fire and
hence learn the functional connectivity in the brain?
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Application areas include:

Financial Markets: Financial instability can lead to financial crises
due to its contagion or spillover e↵ects to other parts of the economy.
Having an accurate measures of systemic risk and inter-dependencies
between financial institution gives central banks and policy makers the
ability to take proper actions in order to stabilize financial markets.

KDD, 2018, London, United Kingdom Jalal Etesami, Ali Habibnia, and Negar Kiyavash
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(a) January 2006 to December 2008
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(b) January 2009 to December 2011

Figure 3: Recovered DIG of the daily returns of the �nancial companies in Table 1. The type of institution causing the rela-
tionship is indicated by color: green for brokers, red for insurers, and blue for banks.
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(a) January 2011 to December 2013
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(b) January 2013 to June 2016

Figure 4: Recovered DIG of the daily returns of the �nancial companies in Table 1. The type of institution causing the rela-
tionship is indicated by color: green for brokers, red for insurers, and blue for banks.

2006-2008 2009-2011 2011-2013 2013-2016
Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br.

Insurance .1390 .1719 .1074 .1291 .1575 .1213 .1054 .1301 .1104 .1075 .1151 .1340
Bank .1361 .1332 .0702 .0866 .1402 .1039 .1417 .1631 .1021 .0774 .1830 .1302
Broker .0774 .1017 .0630 .0740 .929 .0945 .0906 .0873 .0692 .0774 .0774 .0981

Table 3: . Average number of connections between di�erent sectors in the DIGs.

2006-2008 2009-2011 2011-2013 2013-2016
Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br.

Insurance .1896 .0688 .0737 .1785 .1076 .0640 .2033 .0792 .1016 .2107 .0851 .0678
Bank .0906 .1872 .0809 .1322 .1431 .0899 .1136 .1226 .1001 .1010 .1515 .1053
Broker .0857 .1063 .1171 .0790 .0708 .1349 .1226 .0673 .0897 .1082 .0895 .0808

Table 4: . Average number of connections between di�erent sectors in the networks obtained using regression.
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Application areas include:

Social Networks: For networks with large numbers of nodes, such as
millions of people in a social network, e.g., Twitter, having e�cient
algorithms that recover the graphical models is critical.

Vertical lines depict each time a message was posted by that agent. A
major research goal is to infer whether, and how strongly, the news
corporation influences the users by analyzing these time-series.
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Di�culties

Incomplete universe: Not observing all the relevant variables may
lead to false conclusion. For instance, in the chocolate-Noble prize
example, the correlation stems from some hidden variables like
economic strength of a country.
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Di�culties

Incomplete universe: Not observing all the relevant variables may
lead to false conclusion. For instance, in the chocolate-Noble prize
example, the correlation stems from some hidden variables like
economic strength of a country.

Computational Issues: Understanding the causal interaction in a
large network such as social networks, requires large processing large
amounts of data (think: computational power and large memory
usage).

Simultaneous e↵ects: In time series analysis, inaccurate sampling
rate will lead to simultaneous influences between time series. Such
influences cannot be captured using, for example, Granger-causality
analysis and requires finer and more complex analysis.
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Simpson’s paradox

Simpson’s paradox: The table reports the success rates of two
treatments for kidney stonesTable 1.1: A classic example of Simpson’s paradox. The table reports the success rates of

two treatments for kidney stones [Charig et al., 1986, tables I and II] and [Bottou et al.,
2013]. Although the overall success rate of treatment B seems better, treatment B performs
worse than treatment A on both patients with small kidney stones and patients with large
kidney stones, see Examples 3.1.1 and 3.1.7.

Overall
Patients with
small stones

Patients with
large stones

Treatment A:
Open surgery

78% (273/350) 93% (81/87) 73% (192/263)

Treatment B:
Percutaneous nephrolithotomy

83% (289/350) 87% (234/270) 69% (55/80)

puncture wound. If we do not know anything else than the overall recovery rates, many
people would prefer treatment B if they had to decide. Observing the data in more
detail, however, we realize that the open surgery performs better on both small and
large kidney stones. How do we deal with this inversion of conclusion? The answer
is to concentrate on the precise question we are interested in. This is not whether
treatment A or treatment B was more successful in this particular study but how the
treatments compare when we force all patients to take treatment A or B, respectively;
alternatively, we can compare them only on large stones or small stones, of course.
Again, these questions concern some distribution P̃X di�erent from the observational
distribution PX. We will see in Example 3.1.1 why we should prefer treatment A over
treatment B. This data set is a famous example for Simpson’s paradox [Simpson, 1951],
see Example 3.1.7. In fact, it is much less a paradox than the result of the influence of
a confounder (i.e. hidden common cause).

If you perform a significance test on the data (e.g. using a proportion test or �2 inde-
pendence test) it turns out that the di�erence in methods is not significant on a 5%
significance level. Note, however, this is not the point of this example. By multiply-
ing each entry in Table 1.1 by a factor of ten, the results would become statistically
significant.

Example 1.1.4 [Genetic Data] Causal questions also appear in biological data sets, where
we try to predict the e�ect of interventions (e.g. gene knock-outs). Kemmeren et al.
[2014] measures genome-wide mRNA expression levels in yeast, we therefore have data
for p = 6170 genes. There are nobs = 160 “observational” samples of wild-types and
nint = 1479 data points for the “interventional” setting where each of them corresponds
to a strain for which a single gene k 2 K := {k1, . . . , k1479} � {1, . . . , 6170} has
been deleted. The data may therefore be interpreted as coming from an observational
distribution PX and then from 1479 other distributions PX

1 , . . . , PX
1479. And we are

interested in yet other distributions P̃X that tell us how the system reacts after deleting
other genes or any combination of genes. Figure 1.4 shows a small subset of the data.

10

- Although the overall success rate of treatment B seems better, treatment
B performs worse than treatment A on both patients with small kidney
stones and patients with large kidney stones.
- How do we deal with this inversion of conclusion?
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Simpson’s paradox

Another example of Simpson’s paradox:
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Preliminaries

Throughout the lecture we use the following notation.

(⌦,F ,P) : probability space, where ⌦ is the set of all possible
outcomes, F is the set of events and P is the assignment of
probabilities to the events.
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Preliminaries

Throughout the lecture we use the following notation.

(⌦,F ,P) : probability space, where ⌦ is the set of all possible
outcomes, F is the set of events and P is the assignment of
probabilities to the events.

A random variable is a measurable function X : ⌦! E from a set of
possible outcomes ⌦ to a measurable space E . The probability that
X takes on a value in a measurable set S ✓ E is written as

P(X 2 S) = P({! 2 ⌦ | X (!) 2 S})

In many cases, X is real-valued, i.e. E = R.

PX is the distribution of the p-dimensional random vector X .

We call X independent of Y and write X |= Y if and only if

P(x , y) = P(x)P(y)
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We call X1, ...,Xp

jointly (or mutually) independent if and only if

P(X1, ...,Xp

) = P(X1)...P(Xp

).
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We call X1, ...,Xp

jointly (or mutually) independent if and only if

P(X1, ...,Xp

) = P(X1)...P(Xp

).

We call X independent of Y conditional on Z and write X |= Y |Z if
and only if

P(x , y |z) = P(x |z)P(y |z)

for all x , y , z such that p(z) > 0. Otherwise, X and Y are dependent
conditional on Z and we write X 6 |= Y |Z .
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We call X1, ...,Xp

jointly (or mutually) independent if and only if

P(X1, ...,Xp

) = P(X1)...P(Xp

).

We call X independent of Y conditional on Z and write X |= Y |Z if
and only if

P(x , y |z) = P(x |z)P(y |z)

for all x , y , z such that p(z) > 0. Otherwise, X and Y are dependent
conditional on Z and we write X 6 |= Y |Z .
We call X and Y uncorrelated if E[X 2],B[Y 2] <1 and

E[XY ] = E[X ]E[Y ]
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Graphs

A graph G = (V , E) consists of (finitely many) nodes or vertices
V = {1, ..., p} and edges E ✓ V 2 with (v , v) /2 E for any v 2 V .
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A graph G = (V , E) consists of (finitely many) nodes or vertices
V = {1, ..., p} and edges E ✓ V 2 with (v , v) /2 E for any v 2 V .

A graph G1 = (V1, E1) is called a subgraph of G if V1 = V and
E1 ✓ E .
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Graphs
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V = {1, ..., p} and edges E ✓ V 2 with (v , v) /2 E for any v 2 V .

A graph G1 = (V1, E1) is called a subgraph of G if V1 = V and
E1 ✓ E .
A node i is called a parent of j if (i , j) 2 E and (j , i) /2 E and a child
if (j , i) 2 E and (i , j) /2 E .
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Graphs
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V = {1, ..., p} and edges E ✓ V 2 with (v , v) /2 E for any v 2 V .

A graph G1 = (V1, E1) is called a subgraph of G if V1 = V and
E1 ✓ E .
A node i is called a parent of j if (i , j) 2 E and (j , i) /2 E and a child
if (j , i) 2 E and (i , j) /2 E .
Two nodes i and j are adjacent if either (i , j) 2 E or (j , i) 2 E .
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Graphs

A graph G = (V , E) consists of (finitely many) nodes or vertices
V = {1, ..., p} and edges E ✓ V 2 with (v , v) /2 E for any v 2 V .

A graph G1 = (V1, E1) is called a subgraph of G if V1 = V and
E1 ✓ E .
A node i is called a parent of j if (i , j) 2 E and (j , i) /2 E and a child
if (j , i) 2 E and (i , j) /2 E .
Two nodes i and j are adjacent if either (i , j) 2 E or (j , i) 2 E .
The skeleton of G does not take the directions of the edges into
account: it is the graph (V , Ẽ) with (i , j) 2 Ẽ , if (i , j) 2 E or
(j , i) 2 E .
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A directed path in G is a sequence of (at least two) distinct vertices
i1, ..., in, such that there is an edge from i

k

and i
k+1 for all

k = 1, ..., n � 1.
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A directed path in G is a sequence of (at least two) distinct vertices
i1, ..., in, such that there is an edge from i

k

and i
k+1 for all

k = 1, ..., n � 1.

Node i is an ancestor of node j , if there is a directed path from i to j .
Then, j is a descendant i .
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A directed path in G is a sequence of (at least two) distinct vertices
i1, ..., in, such that there is an edge from i

k

and i
k+1 for all

k = 1, ..., n � 1.

Node i is an ancestor of node j , if there is a directed path from i to j .
Then, j is a descendant i .

Graph G is called directed acyclic graph (DAG) if it has no directed
cycle, if there is no pair (j , k) with directed paths from j to k and
from k to j .
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A directed path in G is a sequence of (at least two) distinct vertices
i1, ..., in, such that there is an edge from i

k

and i
k+1 for all

k = 1, ..., n � 1.

Node i is an ancestor of node j , if there is a directed path from i to j .
Then, j is a descendant i .

Graph G is called directed acyclic graph (DAG) if it has no directed
cycle, if there is no pair (j , k) with directed paths from j to k and
from k to j .

Adjacency matrix: We can represent a DAG G = (V ,E ) over p nodes
with a binary p ⇥ p matrix A (taking values 0 or 1): A

i ,j = 1 i↵
(i , j) 2 E .
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Graphical representation

A joint distribution over a set of variables can be factorized using
Bayes rule.

A factorization of a joint distribution can be visualized using a
directed graph (Bayesian network)
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Graphical representation

A joint distribution over a set of variables can be factorized using
Bayes rule.

A factorization of a joint distribution can be visualized using a
directed graph (Bayesian network)

Example:

P(X1,X2,X3,X4) = P(X1)P(X2|X1)P(X3|X1,X2)P(X4|X1,X2,X3)

X1

X2 X3

X4

vvnnn
nnn

//

((

PPP
PPP

✏✏

((

PPP
PPP

vvnnn
nnn

Edges represent conditional dependencies.
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Granger Causality

Clive Granger (1969): ”We say that X is causing Y if we are better
able to predict (the future of ) Y using all available information than
if the information apart from (the past of) X had been used.”
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Granger Causality

Clive Granger (1969): ”We say that X is causing Y if we are better
able to predict (the future of ) Y using all available information than
if the information apart from (the past of) X had been used.”

Granger’s Formulation: AR model

Y
t

= c +
pX

⌧=1

a⌧Yt�⌧ + b⌧Xt�⌧ + ✏
t

Y
t

= c 0 +
pX

⌧=1

a0⌧Yt�⌧ + ✏0
t
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able to predict (the future of ) Y using all available information than
if the information apart from (the past of) X had been used.”

Granger’s Formulation: AR model

Y
t

= c +
pX

⌧=1

a⌧Yt�⌧ + b⌧Xt�⌧ + ✏
t
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t
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⌧=1
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F-test: to assess quality of prediction.
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Granger Causality

Clive Granger (1969): ”We say that X is causing Y if we are better
able to predict (the future of ) Y using all available information than
if the information apart from (the past of) X had been used.”
Granger’s Formulation: AR model

Y
t

= c +
pX

⌧=1

a⌧Yt�⌧ + b⌧Xt�⌧ + ✏
t

Y
t

= c 0 +
pX

⌧=1

a0⌧Yt�⌧ + ✏0
t

F-test: to assess quality of prediction.
RSS: predictive sum of squared residues.

RSS =
TX

⌧=1

✏2
t

, RSS 0 =
TX

⌧=1

(✏0)2
t

, T
s

=
(RSS 0 � RSS)/p

RSS/(T � 2p � 1)

If T
s

> some critical value, reject the null hypothesis
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Granger Causality

Clive Granger (1969): ”We say that X is causing Y if we are better
able to predict (the future of ) Y using all available information than
if the information apart from (the past of) X had been used.”
Granger’s Formulation: AR model

Y
t

= c +
pX

⌧=1

a⌧Yt�⌧ + b⌧Xt�⌧ + ✏
t

Y
t

= c 0 +
pX

⌧=1

a0⌧Yt�⌧ + ✏0
t

F-test: to assess quality of prediction.
RSS: predictive sum of squared residues.

RSS =
TX

⌧=1

✏2
t

, RSS 0 =
TX

⌧=1

(✏0)2
t

, T
s

=
(RSS 0 � RSS)/p

RSS/(T � 2p � 1)

If T
s

> some critical value, reject the null hypothesis
Cons: Linear assumption, stationarity, time synchronization.
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Going beyond linear models

Sequential Predictors: w
i

= g
i

(Y1, ...,Yi�1,X1, ...,Xi

) and
w̃
i

= g̃
i

(Y1, ...,Yi�1)
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Outcome y is revealed, the loss incurred: `(y ,w)
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Going beyond linear models

Sequential Predictors: w
i

= g
i

(Y1, ...,Yi�1,X1, ...,Xi

) and
w̃
i

= g̃
i

(Y1, ...,Yi�1)

Outcome y is revealed, the loss incurred: `(y ,w)

Reduction in loss (regret): 1
T

P
T

i=1 `(yi ,wi

)� `(y
i

, w̃
i

)
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Going beyond linear models

Sequential Predictors: w
i

= g
i

(Y1, ...,Yi�1,X1, ...,Xi

) and
w̃
i

= g̃
i

(Y1, ...,Yi�1)

Outcome y is revealed, the loss incurred: `(y ,w)

Reduction in loss (regret): 1
T

P
T

i=1 `(yi ,wi

)� `(y
i

, w̃
i

)

Case:

Logarithmic loss: `(y ,w) = � logw(y)

Predictors: beliefs (the optimal predictors are conditional densities)
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Going beyond linear models

Sequential Predictors: w
i

= g
i

(Y1, ...,Yi�1,X1, ...,Xi

) and
w̃
i

= g̃
i

(Y1, ...,Yi�1)

Outcome y is revealed, the loss incurred: `(y ,w)

Reduction in loss (regret): 1
T

P
T

i=1 `(yi ,wi

)� `(y
i

, w̃
i

)

Case:

Logarithmic loss: `(y ,w) = � logw(y)

Predictors: beliefs (the optimal predictors are conditional densities)

Then the regret will be:

1

T
E
"

TX

i=1

log
P(Y

i

|Y i�1,X i )

P(Y
i

|Y i�1)

#
:=

1

T
I (XT ! Y T )

Entropy of random variable X: H(X ) := �E[logP(X )]

Mutual information between X and Y : I (X ;Y ) := H(X )� H(X |Y )
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Structural Equation Model (SEM)

A structural equation model (SEM) (also called a functional model)
is defined as a tuple S := (S ,PN), where S = (S1, ..., Sp) is a
collection of p equations

S
j

: X
j

= f
j

(PA
j

,N
j

), j = 1, ..., p,

PA
j

✓ {X1, ...,Xp

}/{X
j

} are called parents of X
j

PN = P(N1, ...,Np

) is the joint distribution of the noise variables and
they are jointly independent.
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Structural Equation Model (SEM)

A structural equation model (SEM) (also called a functional model)
is defined as a tuple S := (S ,PN), where S = (S1, ..., Sp) is a
collection of p equations

S
j

: X
j

= f
j

(PA
j

,N
j

), j = 1, ..., p,

PA
j

✓ {X1, ...,Xp

}/{X
j

} are called parents of X
j

PN = P(N1, ...,Np

) is the joint distribution of the noise variables and
they are jointly independent.

Example 1:

X1 = f1(N1), X2 = f2(X1,N2), X3 = f3(X2,N3)

X1 X2 X3
// //
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Structural Equation Model (SEM)

A structural equation model (SEM) (also called a functional model)
is defined as a tuple S := (S ,PN), where S = (S1, ..., Sp) is a
collection of p equations

S
j

: X
j

= f
j

(PA
j

,N
j

), j = 1, ..., p,

PA
j

✓ {X1, ...,Xp

}/{X
j

} are called parents of X
j

PN = P(N1, ...,Np

) is the joint distribution of the noise variables and
they are jointly independent.
Example 1:

X1 = f1(N1), X2 = f2(X1,N2), X3 = f3(X2,N3)

X1 X2 X3
// //

Example 2:

X = N
x

, Y = 4X + N
y

, X ! Y
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Intervention

Intervention Distribution: Consider PX that has been generated
from an SEM S := (S ,PN). We can then replace one (or more)
structural equations (without generating cycles in the graph) and
obtain a new SEM S̃.
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Intervention Distribution: Consider PX that has been generated
from an SEM S := (S ,PN). We can then replace one (or more)
structural equations (without generating cycles in the graph) and
obtain a new SEM S̃.
The distributions in the new SEM is intervention distributions and the
variables whose structural equation have replaced have been
“intervened on”.
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Intervention

Intervention Distribution: Consider PX that has been generated
from an SEM S := (S ,PN). We can then replace one (or more)
structural equations (without generating cycles in the graph) and
obtain a new SEM S̃.
The distributions in the new SEM is intervention distributions and the
variables whose structural equation have replaced have been
“intervened on”.

Intervention on variable X
j

:

PX

S̃ = PS

⇣
X |do(X

j

= f̃
j

�
P̃A

j

, Ñ
j

)
�⌘
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Intervention

Intervention Distribution: Consider PX that has been generated
from an SEM S := (S ,PN). We can then replace one (or more)
structural equations (without generating cycles in the graph) and
obtain a new SEM S̃.
The distributions in the new SEM is intervention distributions and the
variables whose structural equation have replaced have been
“intervened on”.

Intervention on variable X
j

:

PX

S̃ = PS

⇣
X |do(X

j

= f̃
j

�
P̃A

j

, Ñ
j

)
�⌘

Perfect intervention: when f̃
j

(P̃A
j

, Ñ
j

) puts a point mass on a real
value a, we simply write PS

�
X |do(X

j

= a)
�
.
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Example: A patient with poor eyesight comes to the hospital and
goes blind (B = 1) after the doctor suggests the treatment T = 1.
Let us assume

T = N
T

B = T .N
B

+ (1� T )(1� N
B

)

where N
B

⇠ Ber(0.01).

In this example, we have

PS(B = 0|do(T = 1)) = 0.99

PS(B = 0|do(T = 0)) = 0.01
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Another Example: Suppose that P(X ,Y ) is induced by a structural
equation model S

X = N
x

, Y = 3X + N
y

, ) X ! Y

with N
x

,N
y

⇠ N (0, 1). The

P(Y ) = N (0, 10)

P(Y |do(X = 2)) = N (6, 1), P(Y |do(X = 1.2)) = N (3.6, 1)

P(X |do(Y = 2)) = P(X |do(Y = 1.2)) = N (0, 1) = P(X )
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Another Example: Suppose that P(X ,Y ) is induced by a structural
equation model S

X = N
x

, Y = 3X + N
y

, ) X ! Y

with N
x

,N
y

⇠ N (0, 1). The

P(Y ) = N (0, 10)

P(Y |do(X = 2)) = N (6, 1), P(Y |do(X = 1.2)) = N (3.6, 1)

P(X |do(Y = 2)) = P(X |do(Y = 1.2)) = N (0, 1) = P(X )

Intervening on X changes the distribution of Y but not the other way
around.
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Total causal e↵ect

Total causal e↵ect: Given an SEM S, there is a (total) causal e↵ect
from X

i

to X
j

i↵

X
i

6 |= Xj

in PS(X1, ...,Xp

|do(X
i

= Ñ
x

))

for some variable Ñ
x

.
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Total causal e↵ect

Total causal e↵ect: Given an SEM S, there is a (total) causal e↵ect
from X

i

to X
j

i↵

X
i

6 |= Xj

in PS(X1, ...,Xp

|do(X
i

= Ñ
x

))

for some variable Ñ
x

.

Example: Consider the following SEM,

X = N
x

, Y = 3X + N
y

.

When we replace the structural equation for X with X = Ñ
x

, the
dependency between X and Y does not vanish. Thus, there is a causal
e↵ect from X to Y.
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Proposition:

If there is no directed path from X to Y , then there is no causal e↵ect.

Example: Consider the following SEM

A = N
a

, B = A� N
b

, C = B � N
c

,

A! B ! C

where N
a

' Ber(1/2),N
b

⇠ Ber(1/3) and N
c

⇠ Ber(1/20) are
independent. � denotes addition modulo 2 (i.e. 1� 1 = 0)

PS(B |do(C = 1)) = P(B)
PS(B |do(A = 1)) = Ber(2/3) 6= P(B)
There are causal e↵ects from A to B and A to C.
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Counterfactual

conterfactual SEM: Consider an SEM S := (S ,PN) over nodes X.
Given some observations x, we define a counterfactual SEM by
replacing the distribution of noise variables:

S
X=x

:= (S ,PN

S,X=x

)

PN

S,X=x

= PN|X=x

S
The new set of noises need not be independent.
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Counterfactual

conterfactual SEM: Consider an SEM S := (S ,PN) over nodes X.
Given some observations x, we define a counterfactual SEM by
replacing the distribution of noise variables:

S
X=x

:= (S ,PN

S,X=x

)

PN

S,X=x

= PN|X=x

S
The new set of noises need not be independent.

Counterfactual statements can be seen as do-statements in the new
conterfactual SEM.
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Counterfactual

Example: Consider the following SEM

X = N
x

, Y = X 2 + N
y

, Z = 2Y + X + N
z

where N
x

,N
y

,N
z

⇠ N (0, 1).

Suppose we observe (x , y , z) = (1, 2, 4)
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Counterfactual

Example: Consider the following SEM

X = N
x

, Y = X 2 + N
y

, Z = 2Y + X + N
z

where N
x

,N
y

,N
z

⇠ N (0, 1).

Suppose we observe (x , y , z) = (1, 2, 4)

PN|(1,2,4)
S puts a point mass on (N

x

,N
y

,N
z

) = (1, 1,�1).
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Counterfactual

Example: Consider the following SEM

X = N
x

, Y = X 2 + N
y

, Z = 2Y + X + N
z

where N
x

,N
y

,N
z

⇠ N (0, 1).

Suppose we observe (x , y , z) = (1, 2, 4)

PN|(1,2,4)
S puts a point mass on (N

x

,N
y

,N
z

) = (1, 1,�1).
counterfactual statement: “Z would have been 11, had X been 2.”
means PZ |do(X=2)

S,(1,2,4) is a point mass on 11.
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Counterfactual

Example: Consider the following SEM

X = N
x

, Y = X 2 + N
y

, Z = 2Y + X + N
z

where N
x

,N
y

,N
z

⇠ N (0, 1).

Suppose we observe (x , y , z) = (1, 2, 4)

PN|(1,2,4)
S puts a point mass on (N

x

,N
y

,N
z

) = (1, 1,�1).
counterfactual statement: “Z would have been 11, had X been 2.”
means PZ |do(X=2)

S,(1,2,4) is a point mass on 11.

“Y would have been 5, had X been 2.”

“Z would have been 11, had Y been 5.”
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Graphical model

Graphical models can encode a set of conditional dependence and
independence of variables.

Markov property enables us to read o↵ CI from a graph.

Faithfulness allows us to read o↵ graphical property (d-separation)
from CI.
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Graphical model

Graphical models can encode a set of conditional dependence and
independence of variables.

Markov property enables us to read o↵ CI from a graph.

Faithfulness allows us to read o↵ graphical property (d-separation)
from CI.

Example: P(X1,X2,X3,X4) = P(X1)P(X2|X1)P(X3|X1,X2)P(X4|X3)

X1

X2 X3

X4

vvnnn
nnn

//

((

PPP
PPP

vvnnn
nnn
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Graphical model

Graphical models can encode a set of conditional dependence and
independence of variables.

Markov property enables us to read o↵ CI from a graph.

Faithfulness allows us to read o↵ graphical property (d-separation)
from CI.

Example: P(X1,X2,X3,X4) = P(X1)P(X2|X1)P(X3|X1,X2)P(X4|X3)

X1

X2 X3

X4

vvnnn
nnn

//

((

PPP
PPP

vvnnn
nnn

CI: X4 |= X1|X3, X4 |= X2|X3.

From the graph: X1 and X4 are “d-separated” by X3.
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D-separation

Three nodes are called an immorality or a v-structure if one node is a child
of the two others that themselves are not adjacent.

i ! j  k

j is called a collider.
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D-separation

Three nodes are called an immorality or a v-structure if one node is a child
of the two others that themselves are not adjacent.

i ! j  k

j is called a collider.

Blocked path: In a DAG, a path between i1 and i
n

is blocked by a set S
(with neither i1 nor i

n

in S) whenever there is a node i
k

, such that one of
the following happens:

1 i
k

2 S and i
k�1 ! i

k

! i
k+1 or i

k�1  i
k

 i
k+1 or i

k�1  i
k

! i
k+1.

2 i
k�1 ! i

k

 i
k+1 and neither i

k

nor any of its descendants is in S .
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D-separation

Three nodes are called an immorality or a v-structure if one node is a child
of the two others that themselves are not adjacent.

i ! j  k

j is called a collider.

Blocked path: In a DAG, a path between i1 and i
n

is blocked by a set S
(with neither i1 nor i

n

in S) whenever there is a node i
k

, such that one of
the following happens:

1 i
k

2 S and i
k�1 ! i

k

! i
k+1 or i

k�1  i
k

 i
k+1 or i

k�1  i
k

! i
k+1.

2 i
k�1 ! i

k

 i
k+1 and neither i

k

nor any of its descendants is in S .

D-separation: Two disjoint subsets of vertices A and B are d-separated by
a third (also disjoint) subset S if every path between nodes in A and B is
blocked by S .
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D-separation

Three nodes are called an immorality or a v-structure if one node is a child
of the two others that themselves are not adjacent.

i ! j  k

j is called a collider.

Blocked path: In a DAG, a path between i1 and i
n

is blocked by a set S
(with neither i1 nor i

n

in S) whenever there is a node i
k

, such that one of
the following happens:

1 i
k

2 S and i
k�1 ! i

k

! i
k+1 or i

k�1  i
k

 i
k+1 or i

k�1  i
k

! i
k+1.

2 i
k�1 ! i

k

 i
k+1 and neither i

k

nor any of its descendants is in S .

D-separation: Two disjoint subsets of vertices A and B are d-separated by
a third (also disjoint) subset S if every path between nodes in A and B is
blocked by S .

Unblocked path: a path can be traced without traversing colliding (head to
head) arrows.

70 / 123



D-separation

Three nodes are called an immorality or a v-structure if one node is a child
of the two others that themselves are not adjacent.

i ! j  k

j is called a collider.

Blocked path: In a DAG, a path between i1 and i
n

is blocked by a set S
(with neither i1 nor i

n

in S) whenever there is a node i
k

, such that one of
the following happens:

1 i
k

2 S and i
k�1 ! i

k

! i
k+1 or i

k�1  i
k

 i
k+1 or i

k�1  i
k

! i
k+1.

2 i
k�1 ! i

k

 i
k+1 and neither i

k

nor any of its descendants is in S .

D-separation: Two disjoint subsets of vertices A and B are d-separated by
a third (also disjoint) subset S if every path between nodes in A and B is
blocked by S .

Unblocked path: a path can be traced without traversing colliding (head to
head) arrows.

Given a DAG G , we obtain the undirected moralized graph Gmor of G by
connecting the parents of each node and removing the directions of the
edges.
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Markov Properties

Markov property Given a DAG G and a joint distribution PX , this
distribution is said to satisfy

the global Markov property with respect to the DAG G if

A,B d-separated by C ) A |= B |C

for all disjoint sets A,B ,C .
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Markov Properties

Markov property Given a DAG G and a joint distribution PX , this
distribution is said to satisfy

the global Markov property with respect to the DAG G if

A,B d-separated by C ) A |= B |C

for all disjoint sets A,B ,C .
the local Markov property with respect to the DAG G if each variable
is independent of its non-descendants given its parents
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Markov Properties

Markov property Given a DAG G and a joint distribution PX , this
distribution is said to satisfy

the global Markov property with respect to the DAG G if

A,B d-separated by C ) A |= B |C

for all disjoint sets A,B ,C .
the local Markov property with respect to the DAG G if each variable
is independent of its non-descendants given its parents
the Markov factorization property with respect to the DAG G if

P(X1, ...,Xp

) =
pY

i=1

P(X
i

|X
PA

i

)

where X
PA

i

denotes the parents of node i in DAG G .
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Markov Properties

Markov property Given a DAG G and a joint distribution PX , this
distribution is said to satisfy

the global Markov property with respect to the DAG G if

A,B d-separated by C ) A |= B |C

for all disjoint sets A,B ,C .
the local Markov property with respect to the DAG G if each variable
is independent of its non-descendants given its parents
the Markov factorization property with respect to the DAG G if

P(X1, ...,Xp

) =
pY

i=1

P(X
i

|X
PA

i

)

where X
PA

i

denotes the parents of node i in DAG G .
For distributions with positive continuous densities, the global and local
property are equivalent.
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Example: In the following DAG, we have

X1

X2 X3

X4

vvnnn
nnn

((

PPP
PPP

hhPPPPPP

vvnnn
nnn

X2 and X3 are d-separated by X1, ) X2 |= X3|X1

X1 and X4 are d-separated by {X2,X3}, ) X1 |= X4|X2,X3

P(X ) = P(X3)P(X1|X3)P(X2|X1)P(X4|X2,X3)
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Markov Equivalence Class

Markov equivalence class of graphs We denote by M(G ) the set
of distributions that are Markov with respect to G :

M(G ) := {P : satisfies the global (or local) Markov property w.r.t.G}

Two DAGs G1 and G2 are Markov equivalent if M(G1) = M(G2).

77 / 123



Markov Equivalence Class

Markov equivalence class of graphs We denote by M(G ) the set
of distributions that are Markov with respect to G :

M(G ) := {P : satisfies the global (or local) Markov property w.r.t.G}

Two DAGs G1 and G2 are Markov equivalent if M(G1) = M(G2).

Theorem [Verma and Pearl, 1991]

Two DAGs are Markov equivalent if and only if they have the same
skeleton and the same immoralities.
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Example: Next two DAGs are Markov equivalent.

X1

X2 X3

X4

X5
vvnnn

nnn
((

PPP
PPP

//

66nnnnnn
hhPPPPPP

X1

X2 X3

X4

X5
vvnnn

nnn
((

PPP
PPP

oo

66nnnnnn
hhPPPPPP
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p number of DAGs with p nodes

1 1
2 3
3 25
4 543
5 29281
6 3781503
7 1138779265
8 783702329343
9 1213442454842881
10 4175098976430598143
11 31603459396418917607425
12 521939651343829405020504063
13 18676600744432035186664816926721
14 1439428141044398334941790719839535103
15 237725265553410354992180218286376719253505
16 83756670773733320287699303047996412235223138303
17 62707921196923889899446452602494921906963551482675201
18 99421195322159515895228914592354524516555026878588305014783
19 332771901227107591736177573311261125883583076258421902583546773505
20 2344880451051088988152559855229099188899081192234291298795803236068491263

Table 1.2: The number of DAGs depending on the number p of nodes, taken from http:
//oeis.org/A003024 (Feb 2015).

(ii) In general, we have

Ak
ij = # paths of length k from i to j

(iii) If there is a DAG with the identity map is a causal order, its adjacency matrix is
upper triangular, i.e., only the upper-right half of the matrix contains non-zeros.

(iv) We may want to use sparse matrices when the graph is sparse in order to save
space and/or computation time.

The number of DAGs with p nodes have been studied by Robinson [1970, 1973], and inde-
pendently by Stanley [1973]. The number of such matrices (or DAGs) is growing very quickly
in p, see Table 1.3. McKay [2004] proves the following equivalent description of DAGs which
had been conjectured by Eric W. Weisstein.

Theorem 1.3.6 The matrix A is an adjacency matrix of a DAG G if and only if A + Id is
a 0 � 1 matrix with all eigenvalues being real and strictly greater than zero.

16
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Markov Blanket

Consider a graph G = (V ,E ) and a target node Y . The Markov
blanket of Y is the smallest set M such that

Y d-sep. V \ ({Y } [M) given M.

If PX is Markov w.r.t. G , then

Y |= V \ ({Y } [M)|M
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Markov Blanket

Consider a graph G = (V ,E ) and a target node Y . The Markov
blanket of Y is the smallest set M such that

Y d-sep. V \ ({Y } [M) given M.

If PX is Markov w.r.t. G , then

Y |= V \ ({Y } [M)|M

Markov Blanket

The Markov blanket of a node is the set of nodes consisting of its parents,
its children, and any other parents of its children.
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Example:

Z

T R

X

Y

W

vvnnn
nnn

n
((

PPP
PPP

P

((

PPP
PPP

P

vvnnn
nnn

n
vvnnn

nnn
n

((

PPP
PPP

✏✏

Markov blanket of Z is M
Z

:= {T ,R ,Y }, because Z is d-sep. from
{X ,W } by M

Z

.

What is the Markov blanket of R?
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Faithfulness

Definition: PX is said to be faithful to the DAG G if

A |= B |C ) A,B d-sep. by C

for all disjoint sets A,B ,C .
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Faithfulness

Definition: PX is said to be faithful to the DAG G if

A |= B |C ) A,B d-sep. by C

for all disjoint sets A,B ,C .

Markov assumption enables us to read o↵ independence from a graph.
Faithfulness allows us to infer dependencies from the graph1.

1p ) q ⌘ ¬q ) ¬p
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Faithfulness

Definition: PX is said to be faithful to the DAG G if

A |= B |C ) A,B d-sep. by C

for all disjoint sets A,B ,C .

Markov assumption enables us to read o↵ independence from a graph.
Faithfulness allows us to infer dependencies from the graph1.

A distribution satisfies causal minimality with respect to G if it is
Markov with respect to G , but not to any proper subgraph of G .

1p ) q ⌘ ¬q ) ¬p
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Example: Consider the following SEM,

X = N
X

, Y = aX + N
Y

, Z = bY + cX + N
Z

,

where N
X

⇠ N (0,�2
x

), N
Y

⇠ N (0,�2
y

), and N
Z

⇠ N (0,�2
z

).

G1 :

X

Y Z

a

vvnnn
nnn

n
c

((

PPP
PPP

P

b

//
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Example: Consider the following SEM,

X = N
X

, Y = aX + N
Y

, Z = bY + cX + N
Z

,

where N
X

⇠ N (0,�2
x

), N
Y

⇠ N (0,�2
y

), and N
Z

⇠ N (0,�2
z

).

G1 :

X

Y Z

a

vvnnn
nnn

n
c

((

PPP
PPP

P

b

//

if ab + c = 0, the distribution is not faithful with respect to G1 since
we obtain X |= Z

E[(X � µ
X

)(Z � µ
Z

)] = E[XZ ] = (ac + b)E[X 2] = 0
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Example: Consider the following SEM,

X = Ñ
X

, Y = ãX + b̃Z + Ñ
Y

, Z = Ñ
Z

,

where Ñ
X

⇠ N (0, �2
x

), Ñ
Y

⇠ N (0, �2
y

), and Ñ
Z

⇠ N (0, �2
z

).

G2 :

X

Y Z

ã

vvnnn
nnn

n
b̃

oo
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Example: Consider the following SEM,

X = Ñ
X

, Y = ãX + b̃Z + Ñ
Y

, Z = Ñ
Z

,

where Ñ
X

⇠ N (0, �2
x

), Ñ
Y

⇠ N (0, �2
y

), and Ñ
Z

⇠ N (0, �2
z

).

G2 :

X

Y Z

ã

vvnnn
nnn

n
b̃

oo

If we choose

�2
X

= �2
X

, ã = a, �2
Z

= b2�2
Y

+ �2
Z

b̃ = (b�2
Y

)/(b2�2
Y

+ �2
Z

), �2
Y

= �2
Y

� (b2�4
Y

)/(b2�2
Y

+ �2
Z

)
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Example: Consider the following SEM,

X = Ñ
X

, Y = ãX + b̃Z + Ñ
Y

, Z = Ñ
Z

,

where Ñ
X

⇠ N (0, �2
x

), Ñ
Y

⇠ N (0, �2
y

), and Ñ
Z

⇠ N (0, �2
z

).

G2 :

X

Y Z

ã

vvnnn
nnn

n
b̃

oo

If we choose

�2
X

= �2
X

, ã = a, �2
Z

= b2�2
Y

+ �2
Z

b̃ = (b�2
Y

)/(b2�2
Y

+ �2
Z

), �2
Y

= �2
Y

� (b2�4
Y

)/(b2�2
Y

+ �2
Z

)

then both SEMs will lead to the same covariance matrix and the same
observational distribution.

⌃ =

0

@
�2
X

a�2
X

0
a�2

X

a2�2
X

+ �2
Y

b�2
Y

0 b�2
Y

b2�2
Y

+ �2
Z

1

A
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Example: Consider the following SEM,

X = Ñ
X

, Y = ãX + b̃Z + Ñ
Y

, Z = Ñ
Z

,

where Ñ
X

⇠ N (0, �2
x

), Ñ
Y

⇠ N (0, �2
y

), and Ñ
Z

⇠ N (0, �2
z

).

G2 :

X

Y Z

ã

vvnnn
nnn

n
b̃

oo

If we choose

�2
X

= �2
X

, ã = a, �2
Z

= b2�2
Y

+ �2
Z

b̃ = (b�2
Y

)/(b2�2
Y

+ �2
Z

), �2
Y

= �2
Y

� (b2�4
Y

)/(b2�2
Y

+ �2
Z

)

then both SEMs will lead to the same covariance matrix and the same
observational distribution.

⌃ =

0

@
�2
X

a�2
X

0
a�2

X

a2�2
X

+ �2
Y

b�2
Y

0 b�2
Y

b2�2
Y

+ �2
Z

1

A

However, the distribution is faithful with respect to G2 if ã, b̃ 6= 0 and
all �2. > 0.

92 / 123



Do operation

Consider an SEM S ,
X
j

= f
j

(PA
j

,N
j

)

Due to the Markov property, we have

P
S

(X ) =
pY

i=1

P(X
j

|X
PA

j

)

93 / 123



Do operation

Consider an SEM S ,
X
j

= f
j

(PA
j

,N
j

)

Due to the Markov property, we have

P
S

(X ) =
pY

i=1

P(X
j

|X
PA

j

)

Now consider the SEM S̃ after do(X
k

= Ñ
k

) with Ñ
k

⇠ p̃(X
k

),

P
S ,do(X

k

=Ñ

k

)(X ) = p̃(X
k

)
Y

j 6=k

P(X
j

|X
PA

j

)
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Do operation

Consider an SEM S ,
X
j

= f
j

(PA
j

,N
j

)

Due to the Markov property, we have

P
S

(X ) =
pY

i=1

P(X
j

|X
PA

j

)

Now consider the SEM S̃ after do(X
k

= Ñ
k

) with Ñ
k

⇠ p̃(X
k

),

P
S ,do(X

k

=Ñ

k

)(X ) = p̃(X
k

)
Y

j 6=k

P(X
j

|X
PA

j

)

Perfect intervention: do(X
k

= a)

P
S ,do(X

k

=a)(X ) =

⇢ Q
j 6=k

P(X
j

|X
PA

j

) X
k

= a

0 Otherwise
(1)
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Example: Consider the Simpson’s paradox in which all variables are
binary.

T: Treatment, Z: size of stone, R: recovery

Table 1.1: A classic example of Simpson’s paradox. The table reports the success rates of
two treatments for kidney stones [Charig et al., 1986, tables I and II] and [Bottou et al.,
2013]. Although the overall success rate of treatment B seems better, treatment B performs
worse than treatment A on both patients with small kidney stones and patients with large
kidney stones, see Examples 3.1.1 and 3.1.7.

Overall
Patients with
small stones

Patients with
large stones

Treatment A:
Open surgery

78% (273/350) 93% (81/87) 73% (192/263)

Treatment B:
Percutaneous nephrolithotomy

83% (289/350) 87% (234/270) 69% (55/80)

puncture wound. If we do not know anything else than the overall recovery rates, many
people would prefer treatment B if they had to decide. Observing the data in more
detail, however, we realize that the open surgery performs better on both small and
large kidney stones. How do we deal with this inversion of conclusion? The answer
is to concentrate on the precise question we are interested in. This is not whether
treatment A or treatment B was more successful in this particular study but how the
treatments compare when we force all patients to take treatment A or B, respectively;
alternatively, we can compare them only on large stones or small stones, of course.
Again, these questions concern some distribution P̃X di�erent from the observational
distribution PX. We will see in Example 3.1.1 why we should prefer treatment A over
treatment B. This data set is a famous example for Simpson’s paradox [Simpson, 1951],
see Example 3.1.7. In fact, it is much less a paradox than the result of the influence of
a confounder (i.e. hidden common cause).

If you perform a significance test on the data (e.g. using a proportion test or �2 inde-
pendence test) it turns out that the di�erence in methods is not significant on a 5%
significance level. Note, however, this is not the point of this example. By multiply-
ing each entry in Table 1.1 by a factor of ten, the results would become statistically
significant.

Example 1.1.4 [Genetic Data] Causal questions also appear in biological data sets, where
we try to predict the e�ect of interventions (e.g. gene knock-outs). Kemmeren et al.
[2014] measures genome-wide mRNA expression levels in yeast, we therefore have data
for p = 6170 genes. There are nobs = 160 “observational” samples of wild-types and
nint = 1479 data points for the “interventional” setting where each of them corresponds
to a strain for which a single gene k 2 K := {k1, . . . , k1479} � {1, . . . , 6170} has
been deleted. The data may therefore be interpreted as coming from an observational
distribution PX and then from 1479 other distributions PX

1 , . . . , PX
1479. And we are

interested in yet other distributions P̃X that tell us how the system reacts after deleting
other genes or any combination of genes. Figure 1.4 shows a small subset of the data.

10

Z

T R
vvnnn

nnn
n

((

PPP
PPP

P

//

We are interested in

P
S

(R = 1|do(T = A))

P
S

(R = 1|do(T = B))
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We have

P
S

(R = 1|do(T = A)) =
1X

z=0

P
S,do(T=A)(R = 1,Z = z ,T = A)

=
1X

z=0

P
S,do(T=A)(R = 1|Z = z ,T = A)P

S,do(T=A)(Z = z ,T = A)

=
1X

z=0

P
S

(R = 1|T = A,Z = z)P
S

(Z = z |do(T = A))

=
1X

z=0

P
S

(R = 1|T = A,Z = z)P
S

(Z = z)
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We have

P
S

(R = 1|do(T = A)) =
1X

z=0

P
S,do(T=A)(R = 1,Z = z ,T = A)

=
1X

z=0

P
S,do(T=A)(R = 1|Z = z ,T = A)P

S,do(T=A)(Z = z ,T = A)

=
1X

z=0

P
S

(R = 1|T = A,Z = z)P
S

(Z = z |do(T = A))

=
1X

z=0

P
S

(R = 1|T = A,Z = z)P
S

(Z = z)

The last step uses the perfect intervention formula in (1)
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We have

P
S

(R = 1|do(T = A)) =
1X

z=0

P
S,do(T=A)(R = 1,Z = z ,T = A)

=
1X

z=0

P
S,do(T=A)(R = 1|Z = z ,T = A)P

S,do(T=A)(Z = z ,T = A)

=
1X

z=0

P
S

(R = 1|T = A,Z = z)P
S

(Z = z |do(T = A))

=
1X

z=0

P
S

(R = 1|T = A,Z = z)P
S

(Z = z)

The last step uses the perfect intervention formula in (1)
Using the values in the table, we obtain

P
S

(R = 1|do(T = A)) ⇡ 0.93.
357

700
+ 0.73.

343

700
= 0.832

P
S

(R = 1|do(T = B)) ⇡ 0.87.
357

700
+ 0.69.

343

700
= 0.782

But P
S

(R = 1|T = A) = 0.78,
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Instrumental variable

A major complication is the possibility of inconsistent parameter
estimation due to the existence of hidden confounders.
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Instrumental variable

A major complication is the possibility of inconsistent parameter
estimation due to the existence of hidden confounders.

The instrumental variables method provides a way to nonetheless
obtain consistent parameter estimates.
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Instrumental variable

A major complication is the possibility of inconsistent parameter
estimation due to the existence of hidden confounders.

The instrumental variables method provides a way to nonetheless
obtain consistent parameter estimates.

We explain this method through a simple example.
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Instrumental variable

A major complication is the possibility of inconsistent parameter
estimation due to the existence of hidden confounders.

The instrumental variables method provides a way to nonetheless
obtain consistent parameter estimates.

We explain this method through a simple example.

Example: Consider the following causal structure in which A is a
hidden confounder.

A

S Y

�

yyrr
rr
rr
r �

%%

LL
LL

LL
L

⇢
//

Y(log earning) = ↵ + ⇢ S(Schooling years) + � A(Individual ability) + N
Y

(noise)
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Instrumental variable

A major complication is the possibility of inconsistent parameter
estimation due to the existence of hidden confounders.

The instrumental variables method provides a way to nonetheless
obtain consistent parameter estimates.

We explain this method through a simple example.

Example: Consider the following causal structure in which A is a
hidden confounder.

A

S Y

�

yyrr
rr
rr
r �

%%

LL
LL

LL
L

⇢
//

Y(log earning) = ↵ + ⇢ S(Schooling years) + � A(Individual ability) + N
Y

(noise)

Interested in finding the influence of S on Y, i.e., finding ⇢.

No unbiased estimator exists for ⇢:
b⇢ := Cov(Y ,S)

Var(S) == Cov(Y=↵+⇢S+�A+N

Y

,S)
Var(S) = ⇢+ � Cov(A,S)

Var(S) .
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Now, consider the following graph in which
A is a hidden confounder.
Z is a variable such that

Cov(Z , S) 6= 0(First stage restriction criterion)

Cov(Z , �A+ N
Y

) = 0(Exclusion Restriction).
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yyrr
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⇢
//

�
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Now, consider the following graph in which
A is a hidden confounder.
Z is a variable such that

Cov(Z , S) 6= 0(First stage restriction criterion)

Cov(Z , �A+ N
Y

) = 0(Exclusion Restriction).
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Interested in finding ⇢.
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Now, consider the following graph in which
A is a hidden confounder.
Z is a variable such that

Cov(Z , S) 6= 0(First stage restriction criterion)

Cov(Z , �A+ N
Y

) = 0(Exclusion Restriction).

A

SZ Y

�

yyrr
rr
rr
r �

%%

LL
LL

LL
L

⇢
//

�
//

Interested in finding ⇢.

In this model, variable Z (also called Instrumental Variable ) can help
to estimate ⇢.

107 / 123



In this model, we have

S = �Z + �A+ N
S

,

Y = ↵+ ⇢S + �A+ N
Y

.
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In this model, we have

S = �Z + �A+ N
S

,

Y = ↵+ ⇢S + �A+ N
Y

.

First, estimate ⇢�: c⇢� := Cov(Y ,Z)
Var(Z) .
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In this model, we have

S = �Z + �A+ N
S

,

Y = ↵+ ⇢S + �A+ N
Y

.

First, estimate ⇢�: c⇢� := Cov(Y ,Z)
Var(Z) .

Second, estimate �: b� := Cov(S,Z)
Var(Z) .
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In this model, we have

S = �Z + �A+ N
S

,

Y = ↵+ ⇢S + �A+ N
Y

.

First, estimate ⇢�: c⇢� := Cov(Y ,Z)
Var(Z) .

Second, estimate �: b� := Cov(S,Z)
Var(Z) .

Finally, estimate ⇢: b⇢ :=
c⇢�
b�

= Cov(Y ,Z)
Cov(S,Z) .

This is an unbiased estimator because

b⇢ =
Cov(Y ,Z)

Cov(S ,Z)
=

Cov(↵ + ⇢S + �A+ N

Y

,Z)

Cov(S ,Z)
= ⇢ +

Cov(�A+ N

Y

,Z)

Cov(S ,Z)
.
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In this model, we have

S = �Z + �A+ N
S

,

Y = ↵+ ⇢S + �A+ N
Y

.

First, estimate ⇢�: c⇢� := Cov(Y ,Z)
Var(Z) .

Second, estimate �: b� := Cov(S,Z)
Var(Z) .

Finally, estimate ⇢: b⇢ :=
c⇢�
b�

= Cov(Y ,Z)
Cov(S,Z) .

This is an unbiased estimator because

b⇢ =
Cov(Y ,Z)

Cov(S ,Z)
=

Cov(↵ + ⇢S + �A+ N

Y

,Z)

Cov(S ,Z)
= ⇢ +

Cov(�A+ N

Y

,Z)

Cov(S ,Z)
.

According to the restrictions:

Cov(�A+ N

Y

,Z)

Cov(S ,Z)
= 0

Therefore, b⇢ = ⇢.
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Learning Causal Bayes Nets

The goal is to infer the graph given a set of conditional dependence
and independence tests.

SGS Algorithm: developed by Sprites, Glymour and Scheives.
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The goal is to infer the graph given a set of conditional dependence
and independence tests.

SGS Algorithm: developed by Sprites, Glymour and Scheives.

Consists of two phases
1 Learning the skeleton
2 Learning the orientations
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Learning Causal Bayes Nets

The goal is to infer the graph given a set of conditional dependence
and independence tests.

SGS Algorithm: developed by Sprites, Glymour and Scheives.

Consists of two phases
1 Learning the skeleton
2 Learning the orientations

SGS is based on two main assumptions
No hidden confounders
Graph is a DAG
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Estimation of skeleton

It is based on the following result.

Lemma

- Two nodes X, Y in a DAG (V ,E ) are adjacent i↵ they cannot be
d-separated by any subset S ✓ V \ {X ,Y }.
- If two nodes X, Y in a DAG (V ,E ) are not adjacent, then they are
d-separated by either PA

X

or PA
Y

.
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Estimation of skeleton

It is based on the following result.

Lemma

- Two nodes X, Y in a DAG (V ,E ) are adjacent i↵ they cannot be
d-separated by any subset S ✓ V \ {X ,Y }.
- If two nodes X, Y in a DAG (V ,E ) are not adjacent, then they are
d-separated by either PA

X

or PA
Y

.

Steps:
1 Begin with a complete graph.
2 Use conditional dependence and independence test to eliminate edges

(edge elimination).
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Estimation of skeleton

It is based on the following result.

Lemma

- Two nodes X, Y in a DAG (V ,E ) are adjacent i↵ they cannot be
d-separated by any subset S ✓ V \ {X ,Y }.
- If two nodes X, Y in a DAG (V ,E ) are not adjacent, then they are
d-separated by either PA

X

or PA
Y

.

Steps:
1 Begin with a complete graph.
2 Use conditional dependence and independence test to eliminate edges

(edge elimination).

There are di↵erent methods to perform CI tests, e.g., empirical
methods, kernel-based methods. In general, CI tests are di�cult to
perform in practice.
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Orientation of edges

Steps
1 Orient the immoralities (or v-structures) in the graph.

- For structure X � Y � Z with no direct edge between X and Z.
- Let S denotes the corresponding d-separation set for X and Z.
- The structure X � Y � Z is an immorality and can be oriented as
X ! Y  Z if and only if Y 62 S .

2 We may be able to orient some further edges using e.g., Meek’s
orientation rules.
- If there exist a pair A, C not directly connected and exists node B
such that A! B � C , then, we can orient the 2nd arrow from B to C.
- Avoid cycle.
- ...
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Example:

True graph
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Edge Elimination
(zero Orders) Edge AE removed due to unshielded collider.
(1st Orders) ABDF: A d-sep. F by D, Edge AF eliminated.
BDF: B d-sep. F by D, Edge BF eliminated.
CBDF: C d-sep. F by D, Edge CF eliminated.
ECBDF: E d-sep. F by D, Edge EF eliminated.
DBA: A d-sep. D by B, Edge DA eliminated.
DBC: A d-sep. C by B, Edge DC eliminated.
DBCE: D d-sep. E by B, Edge ED eliminated.
(2nd Orders) BACE: B d-sep. E by {A,C}, Edge BE eliminated.
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Edge Orientation
(Statistical Orientation) A |= E , A 6 |= C , E 6 |= C ,A 6 |= E |C ) ACE is a
v-structure.
(Logical Orientation) BCE: C ! B , otherwise unshielded collider.
ABC: A! B , otherwise cycle.
ABD: B ! D, otherwise unshielded collider.
BDF: D ! F , otherwise unshielded collider.
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The End
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