A short course on network causal Inference: theory and applications

Negar Kiyavash

EPFL

June 2021

Overview

- What is Causal Inference?
 - 2 Difficulties
- 3 Random Variables
 - 4 Graphs
- 5 Granger Causality
- 6 Structural Equation Model
 - Intervention
- 8 Graphical models
- 9 Faithfulness
- 10 Do operation
- Learning Causal Bayes Nets

Motivation

We often are interested in discovering causation vs correlation.

Example: [Chocolate - Nobel Prizes] Messerli [2012] reports that there is a significant correlation between a country's chocolate consumption (per capita) and the number of Nobel prizes awarded to its citizens.

• We must be careful with drawing conclusions like "Eating chocolate produces Nobel prize" or "Geniuses are more likely to eat lots of chocolate."

- We must be careful with drawing conclusions like "Eating chocolate produces Nobel prize" or "Geniuses are more likely to eat lots of chocolate."
- Correlation does not imply causation!

• **Computational Neuroscience:** Advances in recording technologies have given neuroscience researchers access to large amounts of data, e.g., individual recordings of neurons in different parts of the brain.

Application areas include:

• **Computational Neuroscience:** Advances in recording technologies have given neuroscience researchers access to large amounts of data, e.g., individual recordings of neurons in different parts of the brain.

Application areas include:

• **Computational Neuroscience:** Advances in recording technologies have given neuroscience researchers access to large amounts of data, e.g., individual recordings of neurons in different parts of the brain.

• Could we understand firing of which neurons causes others to fire and hence learn the functional connectivity in the brain?

Application areas include:

• Financial Markets: Financial instability can lead to financial crises due to its contagion or spillover effects to other parts of the economy. Having an accurate measures of systemic risk and inter-dependencies between financial institution gives central banks and policy makers the ability to take proper actions in order to stabilize financial markets.

• Social Networks: For networks with large numbers of nodes, such as millions of people in a social network, e.g., Twitter, having efficient algorithms that recover the graphical models is critical.

• Vertical lines depict each time a message was posted by that agent. A major research goal is to infer whether, and how strongly, the news corporation influences the users by analyzing these time-series.

• **Incomplete universe:** Not observing all the relevant variables may lead to false conclusion. For instance, in the chocolate-Noble prize example, the correlation stems from some hidden variables like economic strength of a country.

- **Incomplete universe:** Not observing all the relevant variables may lead to false conclusion. For instance, in the chocolate-Noble prize example, the correlation stems from some hidden variables like economic strength of a country.
- **Computational Issues:** Understanding the causal interaction in a large network such as social networks, requires large processing large amounts of data (think: computational power and large memory usage).

- **Incomplete universe:** Not observing all the relevant variables may lead to false conclusion. For instance, in the chocolate-Noble prize example, the correlation stems from some hidden variables like economic strength of a country.
- **Computational Issues:** Understanding the causal interaction in a large network such as social networks, requires large processing large amounts of data (think: computational power and large memory usage).
- **Simultaneous effects:** In time series analysis, inaccurate sampling rate will lead to simultaneous influences between time series. Such influences cannot be captured using, for example, Granger-causality analysis and requires finer and more complex analysis.

Simpson's paradox: The table reports the success rates of two treatments for kidney stones

	Overall	Patients with small stones	Patients with large stones
Treatment A: Open surgery	$78\% \ (273/350)$	$\mathbf{93\%}\ (81/87)$	$\mathbf{73\%}\;(192/263)$
Treatment B: Percutaneous nephrolithotomy	$\mathbf{83\%}\ (289/350)$	87% (234/270)	$69\% \ (55/80)$

- Although the overall success rate of treatment B seems better, treatment B performs worse than treatment A on both patients with small kidney stones and patients with large kidney stones.

- How do we deal with this inversion of conclusion?

Another example of Simpson's paradox:

Admission data on university level:

	Applicants	Admitted
Men	8442	44%
Women	4321	35%

Admission data on department level:

	Men		Women	
Departments	Applicants	Admitted	Applicants	Admitted
А	825	63%	108	82%
В	560	62%	25	68%
С	325	37%	593	39%

Among 85 departments, there are 6 against men but only 4 against women.

(Ω, F, ℙ): probability space, where Ω is the set of all possible outcomes, F is the set of events and ℙ is the assignment of probabilities to the events.

- (Ω, F, ℙ): probability space, where Ω is the set of all possible outcomes, F is the set of events and ℙ is the assignment of probabilities to the events.
- A random variable is a measurable function X : Ω → E from a set of possible outcomes Ω to a measurable space E. The probability that X takes on a value in a measurable set S ⊆ E is written as

$$\mathbb{P}(X \in S) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in S\})$$

- (Ω, F, ℙ): probability space, where Ω is the set of all possible outcomes, F is the set of events and ℙ is the assignment of probabilities to the events.
- A random variable is a measurable function X : Ω → E from a set of possible outcomes Ω to a measurable space E. The probability that X takes on a value in a measurable set S ⊆ E is written as

$$\mathbb{P}(X \in S) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in S\})$$

• In many cases, X is real-valued, i.e. $E = \mathbb{R}$.

- (Ω, F, ℙ): probability space, where Ω is the set of all possible outcomes, F is the set of events and ℙ is the assignment of probabilities to the events.
- A random variable is a measurable function X : Ω → E from a set of possible outcomes Ω to a measurable space E. The probability that X takes on a value in a measurable set S ⊆ E is written as

$$\mathbb{P}(X \in S) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in S\})$$

- In many cases, X is real-valued, i.e. $E = \mathbb{R}$.
- \mathbb{P}^X is the distribution of the *p*-dimensional random vector *X*.

Preliminaries

Throughout the lecture we use the following notation.

- (Ω, F, ℙ): probability space, where Ω is the set of all possible outcomes, F is the set of events and ℙ is the assignment of probabilities to the events.
- A random variable is a measurable function X : Ω → E from a set of possible outcomes Ω to a measurable space E. The probability that X takes on a value in a measurable set S ⊆ E is written as

$$\mathbb{P}(X \in S) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in S\})$$

- In many cases, X is real-valued, i.e. $E = \mathbb{R}$.
- \mathbb{P}^X is the distribution of the *p*-dimensional random vector *X*.
- We call X independent of Y and write $X \perp Y$ if and only if

$$\mathbb{P}(x,y) = \mathbb{P}(x)\mathbb{P}(y)$$

• We call $X_1, ..., X_p$ jointly (or mutually) independent if and only if $\mathbb{P}(X_1, ..., X_p) = \mathbb{P}(X_1)...\mathbb{P}(X_p).$ • We call $X_1, ..., X_p$ jointly (or mutually) independent if and only if

$$\mathbb{P}(X_1,...,X_p) = \mathbb{P}(X_1)...\mathbb{P}(X_p).$$

 We call X independent of Y conditional on Z and write X⊥⊥Y|Z if and only if

$$\mathbb{P}(x,y|z) = \mathbb{P}(x|z)\mathbb{P}(y|z)$$

for all x, y, z such that p(z) > 0. Otherwise, X and Y are dependent conditional on Z and we write X / || Y | Z.

• We call $X_1, ..., X_p$ jointly (or mutually) independent if and only if

$$\mathbb{P}(X_1,...,X_{\rho})=\mathbb{P}(X_1)...\mathbb{P}(X_{\rho}).$$

 We call X independent of Y conditional on Z and write X ⊥ Y |Z if and only if

$$\mathbb{P}(x,y|z) = \mathbb{P}(x|z)\mathbb{P}(y|z)$$

for all x, y, z such that p(z) > 0. Otherwise, X and Y are dependent conditional on Z and we write $X \perp Y | Z$.

• We call X and Y uncorrelated if $\mathbb{E}[X^2], \mathbb{B}[Y^2] < \infty$ and

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

A graph G = (V, E) consists of (finitely many) nodes or vertices
 V = {1,..., p} and edges E ⊆ V² with (v, v) ∉ E for any v ∈ V.

- A graph $G = (V, \mathcal{E})$ consists of (finitely many) nodes or vertices $V = \{1, ..., p\}$ and edges $\mathcal{E} \subseteq V^2$ with $(v, v) \notin \mathcal{E}$ for any $v \in V$.
- A graph $G_1 = (V_1, \mathcal{E}_1)$ is called a subgraph of G if $V_1 = V$ and $\mathcal{E}_1 \subseteq \mathcal{E}$.

- A graph G = (V, E) consists of (finitely many) nodes or vertices
 V = {1,..., p} and edges E ⊆ V² with (v, v) ∉ E for any v ∈ V.
- A graph $G_1 = (V_1, \mathcal{E}_1)$ is called a subgraph of G if $V_1 = V$ and $\mathcal{E}_1 \subseteq \mathcal{E}$.
- A node i is called a parent of j if (i, j) ∈ E and (j, i) ∉ E and a child if (j, i) ∈ E and (i, j) ∉ E.

- A graph $G = (V, \mathcal{E})$ consists of (finitely many) nodes or vertices $V = \{1, ..., p\}$ and edges $\mathcal{E} \subseteq V^2$ with $(v, v) \notin \mathcal{E}$ for any $v \in V$.
- A graph $G_1 = (V_1, \mathcal{E}_1)$ is called a subgraph of G if $V_1 = V$ and $\mathcal{E}_1 \subseteq \mathcal{E}$.
- A node i is called a parent of j if (i, j) ∈ E and (j, i) ∉ E and a child if (j, i) ∈ E and (i, j) ∉ E.
- Two nodes *i* and *j* are *adjacent* if either $(i, j) \in \mathcal{E}$ or $(j, i) \in \mathcal{E}$.

- A graph $G = (V, \mathcal{E})$ consists of (finitely many) nodes or vertices $V = \{1, ..., p\}$ and edges $\mathcal{E} \subseteq V^2$ with $(v, v) \notin \mathcal{E}$ for any $v \in V$.
- A graph $G_1 = (V_1, \mathcal{E}_1)$ is called a subgraph of G if $V_1 = V$ and $\mathcal{E}_1 \subseteq \mathcal{E}$.
- A node i is called a parent of j if (i, j) ∈ E and (j, i) ∉ E and a child if (j, i) ∈ E and (i, j) ∉ E.
- Two nodes *i* and *j* are *adjacent* if either $(i, j) \in \mathcal{E}$ or $(j, i) \in \mathcal{E}$.
- The skeleton of G does not take the directions of the edges into account: it is the graph (V, *E*) with (i, j) ∈ *E*, if (i, j) ∈ *E* or (j, i) ∈ *E*.

A directed path in G is a sequence of (at least two) distinct vertices i₁, ..., i_n, such that there is an edge from i_k and i_{k+1} for all k = 1, ..., n - 1.

- A directed path in G is a sequence of (at least two) distinct vertices $i_1, ..., i_n$, such that there is an edge from i_k and i_{k+1} for all k = 1, ..., n 1.
- Node *i* is an *ancestor* of node *j*, if there is a directed path from *i* to *j*. Then, *j* is a *descendant i*.

- A directed path in G is a sequence of (at least two) distinct vertices $i_1, ..., i_n$, such that there is an edge from i_k and i_{k+1} for all k = 1, ..., n 1.
- Node *i* is an *ancestor* of node *j*, if there is a directed path from *i* to *j*. Then, *j* is a *descendant i*.
- Graph G is called directed acyclic graph (DAG) if it has no directed cycle, if there is no pair (j, k) with directed paths from j to k and from k to j.

- A directed path in G is a sequence of (at least two) distinct vertices $i_1, ..., i_n$, such that there is an edge from i_k and i_{k+1} for all k = 1, ..., n 1.
- Node *i* is an *ancestor* of node *j*, if there is a directed path from *i* to *j*. Then, *j* is a *descendant i*.
- Graph G is called directed acyclic graph (DAG) if it has no directed cycle, if there is no pair (j, k) with directed paths from j to k and from k to j.
- Adjacency matrix: We can represent a DAG G = (V, E) over p nodes with a binary p × p matrix A (taking values 0 or 1): A_{i,j} = 1 iff (i, j) ∈ E.

- A joint distribution over a set of variables can be factorized using Bayes rule.
- A factorization of a joint distribution can be visualized using a directed graph (Bayesian network)

Graphical representation

- A joint distribution over a set of variables can be factorized using Bayes rule.
- A factorization of a joint distribution can be visualized using a directed graph (Bayesian network)

• Example:

 $\mathbb{P}(X_1, X_2, X_3, X_4) = \mathbb{P}(X_1)\mathbb{P}(X_2|X_1)\mathbb{P}(X_3|X_1, X_2)\mathbb{P}(X_4|X_1, X_2, X_3)$

• Edges represent conditional dependencies.

• Clive Granger (1969): "We say that X is causing Y if we are better able to predict (the future of) Y using all available information than if the information apart from (the past of) X had been used."

- Clive Granger (1969): "We say that X is causing Y if we are better able to predict (the future of) Y using all available information than if the information apart from (the past of) X had been used."
- Granger's Formulation: AR model

$$Y_{t} = c + \sum_{\tau=1}^{p} a_{\tau} Y_{t-\tau} + b_{\tau} X_{t-\tau} + \epsilon_{t}$$
$$Y_{t} = c' + \sum_{\tau=1}^{p} a'_{\tau} Y_{t-\tau} + \epsilon'_{t}$$

- **Clive Granger** (1969): "We say that X is causing Y if we are better able to predict (the future of) Y using all available information than if the information apart from (the past of) X had been used."
- Granger's Formulation: AR model

$$Y_{t} = c + \sum_{\tau=1}^{p} a_{\tau} Y_{t-\tau} + b_{\tau} X_{t-\tau} + \epsilon_{t}$$
$$Y_{t} = c' + \sum_{\tau=1}^{p} a'_{\tau} Y_{t-\tau} + \epsilon'_{t}$$

• F-test: to assess quality of prediction.

Granger Causality

- Clive Granger (1969): "We say that X is causing Y if we are better able to predict (the future of) Y using all available information than if the information apart from (the past of) X had been used."
- Granger's Formulation: AR model

$$Y_{t} = c + \sum_{\tau=1}^{p} a_{\tau} Y_{t-\tau} + b_{\tau} X_{t-\tau} + \epsilon_{t}$$
$$Y_{t} = c' + \sum_{\tau=1}^{p} a'_{\tau} Y_{t-\tau} + \epsilon'_{t}$$

- F-test: to assess quality of prediction.
- RSS: predictive sum of squared residues.

$$RSS = \sum_{\tau=1}^{T} \epsilon_t^2, \ RSS' = \sum_{\tau=1}^{T} (\epsilon')_t^2, \ T_s = \frac{(RSS' - RSS)/p}{RSS/(T - 2p - 1)}$$

• If T_s > some critical value, reject the null hypothesis

Granger Causality

- **Clive Granger** (1969): "We say that X is causing Y if we are better able to predict (the future of) Y using all available information than if the information apart from (the past of) X had been used."
- Granger's Formulation: AR model

$$Y_{t} = c + \sum_{\tau=1}^{p} a_{\tau} Y_{t-\tau} + b_{\tau} X_{t-\tau} + \epsilon_{t}$$
$$Y_{t} = c' + \sum_{\tau=1}^{p} a'_{\tau} Y_{t-\tau} + \epsilon'_{t}$$

- F-test: to assess quality of prediction.
- RSS: predictive sum of squared residues.

$$RSS = \sum_{\tau=1}^{T} \epsilon_t^2, \ RSS' = \sum_{\tau=1}^{T} (\epsilon')_t^2, \ T_s = \frac{(RSS' - RSS)/p}{RSS/(T - 2p - 1)}$$

• If T_s > some critical value, reject the null hypothesis

• Cons: Linear assumption, stationarity, time synchronization.

• Sequential Predictors: $w_i = g_i(Y_1, ..., Y_{i-1}, X_1, ..., X_i)$ and $\tilde{w}_i = \tilde{g}_i(Y_1, ..., Y_{i-1})$

- Sequential Predictors: $w_i = g_i(Y_1, ..., Y_{i-1}, X_1, ..., X_i)$ and $\tilde{w}_i = \tilde{g}_i(Y_1, ..., Y_{i-1})$
- Outcome y is revealed, the loss incurred: $\ell(y, w)$

- Sequential Predictors: $w_i = g_i(Y_1, ..., Y_{i-1}, X_1, ..., X_i)$ and $\tilde{w}_i = \tilde{g}_i(Y_1, ..., Y_{i-1})$
- Outcome y is revealed, the loss incurred: $\ell(y, w)$
- Reduction in loss (regret): $\frac{1}{T} \sum_{i=1}^{T} \ell(y_i, w_i) \ell(y_i, \tilde{w}_i)$

- Sequential Predictors: $w_i = g_i(Y_1, ..., Y_{i-1}, X_1, ..., X_i)$ and $\tilde{w}_i = \tilde{g}_i(Y_1, ..., Y_{i-1})$
- Outcome y is revealed, the loss incurred: $\ell(y, w)$
- Reduction in loss (regret): $\frac{1}{T} \sum_{i=1}^{T} \ell(y_i, w_i) \ell(y_i, \tilde{w}_i)$

• Case:

- Logarithmic loss: $\ell(y, w) = -\log w(y)$
- Predictors: beliefs (the optimal predictors are conditional densities)

Going beyond linear models

- Sequential Predictors: $w_i = g_i(Y_1, ..., Y_{i-1}, X_1, ..., X_i)$ and $\tilde{w}_i = \tilde{g}_i(Y_1, ..., Y_{i-1})$
- Outcome y is revealed, the loss incurred: $\ell(y, w)$
- Reduction in loss (regret): $\frac{1}{T} \sum_{i=1}^{T} \ell(y_i, w_i) \ell(y_i, \tilde{w}_i)$

• Case:

- Logarithmic loss: $\ell(y, w) = -\log w(y)$
- Predictors: beliefs (the optimal predictors are conditional densities)
- Then the regret will be:

$$\frac{1}{T}\mathbb{E}\left[\sum_{i=1}^{T}\log\frac{\mathbb{P}(Y_i|Y^{i-1},X^i)}{\mathbb{P}(Y_i|Y^{i-1})}\right] := \frac{1}{T}I(X^T \to Y^T)$$

- Entropy of random variable X: $H(X) := -\mathbb{E}[\log \mathbb{P}(X)]$
- Mutual information between X and Y : I(X; Y) := H(X) H(X|Y)

A structural equation model (SEM) (also called a functional model) is defined as a tuple S := (S, P^N), where S = (S₁, ..., S_p) is a collection of p equations

$$S_j: X_j = f_j(PA_j, N_j), j = 1, ..., p,$$

- $PA_j \subseteq \{X_1, ..., X_p\}/\{X_j\}$ are called parents of X_j
- $\mathbb{P}^N = \mathbb{P}(N_1, ..., N_p)$ is the joint distribution of the noise variables and they are jointly independent.

Structural Equation Model (SEM)

A structural equation model (SEM) (also called a functional model) is defined as a tuple S := (S, P^N), where S = (S₁, ..., S_p) is a collection of p equations

$$S_j: \quad X_j = f_j(PA_j, N_j), \quad j = 1, ..., p,$$

- $PA_j \subseteq \{X_1, ..., X_p\}/\{X_j\}$ are called parents of X_j
- $\mathbb{P}^N = \mathbb{P}(N_1, ..., N_p)$ is the joint distribution of the noise variables and they are jointly independent.
- Example 1:

$$X_1 = f_1(N_1), X_2 = f_2(X_1, N_2), X_3 = f_3(X_2, N_3)$$

$$X_1 \longrightarrow X_2 \longrightarrow X_3$$

Structural Equation Model (SEM)

A structural equation model (SEM) (also called a functional model) is defined as a tuple S := (S, P^N), where S = (S₁, ..., S_p) is a collection of p equations

$$S_j: X_j = f_j(PA_j, N_j), j = 1, ..., p,$$

- $\mathit{PA}_j \subseteq \{X_1,...,X_p\}/\{X_j\}$ are called parents of X_j
- $\mathbb{P}^N = \mathbb{P}(N_1, ..., N_p)$ is the joint distribution of the noise variables and they are jointly independent.
- Example 1:

$$X_1 = f_1(N_1), \ X_2 = f_2(X_1, N_2), \ X_3 = f_3(X_2, N_3)$$

$$X_1 \longrightarrow X_2 \longrightarrow X_3$$

• Example 2:

$$X = N_x, \quad Y = 4X + N_y, \quad X \to Y$$

Intervention Distribution: Consider P^X that has been generated from an SEM S := (S, P^N). We can then replace one (or more) structural equations (without generating cycles in the graph) and obtain a new SEM S̃.

- Intervention Distribution: Consider P^X that has been generated from an SEM S := (S, P^N). We can then replace one (or more) structural equations (without generating cycles in the graph) and obtain a new SEM S̃.
- The distributions in the new SEM is intervention distributions and the variables whose structural equation have replaced have been "intervened on".

- Intervention Distribution: Consider P^X that has been generated from an SEM S := (S, P^N). We can then replace one (or more) structural equations (without generating cycles in the graph) and obtain a new SEM S̃.
- The distributions in the new SEM is intervention distributions and the variables whose structural equation have replaced have been "intervened on".
- Intervention on variable X_j:

$$\mathbb{P}_{\tilde{\mathcal{S}}}^{X} = \mathbb{P}_{\mathcal{S}}\Big(X|do(X_{j} = \tilde{f}_{j}\big(\tilde{\mathit{PA}}_{j}, \tilde{\mathit{N}}_{j})\big)\Big)$$

- Intervention Distribution: Consider P^X that has been generated from an SEM S := (S, P^N). We can then replace one (or more) structural equations (without generating cycles in the graph) and obtain a new SEM S̃.
- The distributions in the new SEM is intervention distributions and the variables whose structural equation have replaced have been "intervened on".
- Intervention on variable X_j:

$$\mathbb{P}_{\tilde{\mathcal{S}}}^{X} = \mathbb{P}_{\mathcal{S}}\Big(X|\textit{do}(X_{j} = \tilde{f}_{j}\big(\tilde{\textit{PA}}_{j}, \tilde{N}_{j})\big)\Big)$$

• Perfect intervention: when $\tilde{f}_j(\tilde{PA}_j, \tilde{N}_j)$ puts a point mass on a real value *a*, we simply write $\mathbb{P}_{\mathcal{S}}(X|do(X_j = a))$.

• **Example:** A patient with poor eyesight comes to the hospital and goes blind (B = 1) after the doctor suggests the treatment T = 1. Let us assume

$$T = N_T$$

$$B = T.N_B + (1 - T)(1 - N_B)$$

where $N_B \sim Ber(0.01)$.

• In this example, we have

$$\mathbb{P}_{\mathcal{S}}(B=0|do(T=1))=0.99$$

 $\mathbb{P}_{\mathcal{S}}(B=0|do(T=0))=0.01$

Another Example: Suppose that ℙ(X, Y) is induced by a structural equation model S

$$X = N_x, Y = 3X + N_y, \Rightarrow X \to Y$$

with $N_x, N_y \sim \mathcal{N}(0, 1)$. The

$$egin{aligned} & \mathbb{P}(Y) = \mathcal{N}(0, 10) \ & \mathbb{P}(Y| do(X = 2)) = \mathcal{N}(6, 1), \ \ & \mathbb{P}(Y| do(X = 1.2)) = \mathcal{N}(3.6, 1) \ & \mathbb{P}(X| do(Y = 2)) = \mathbb{P}(X| do(Y = 1.2)) = \mathcal{N}(0, 1) = \mathbb{P}(X) \end{aligned}$$

Another Example: Suppose that P(X, Y) is induced by a structural equation model S

$$X = N_x, \quad Y = 3X + N_y, \quad \Rightarrow \quad X \to Y$$

with $N_x, N_y \sim \mathcal{N}(0, 1)$. The

$$\begin{split} \mathbb{P}(Y) &= \mathcal{N}(0, 10) \\ \mathbb{P}(Y| do(X = 2)) &= \mathcal{N}(6, 1), \quad \mathbb{P}(Y| do(X = 1.2)) = \mathcal{N}(3.6, 1) \\ \mathbb{P}(X| do(Y = 2)) &= \mathbb{P}(X| do(Y = 1.2)) = \mathcal{N}(0, 1) = \mathbb{P}(X) \end{split}$$

• Intervening on X changes the distribution of Y but not the other way around.

• Total causal effect: Given an SEM S, there is a (total) causal effect from X_i to X_j iff

$$X_i
eq X_j$$
 in $\mathbb{P}_{\mathcal{S}}(X_1,...,X_p | do(X_i = ilde{N}_x))$

for some variable \tilde{N}_{x} .

• Total causal effect: Given an SEM S, there is a (total) causal effect from X_i to X_j iff

$$X_i / \mathbb{L} X_j$$
 in $\mathbb{P}_{\mathcal{S}}(X_1, ..., X_p | do(X_i = \tilde{N}_x))$

for some variable \tilde{N}_{x} .

• Example: Consider the following SEM,

$$X = N_x, \quad Y = 3X + N_y.$$

When we replace the structural equation for X with $X = \tilde{N}_x$, the dependency between X and Y does not vanish. Thus, there is a causal effect from X to Y.

Proposition:

If there is no directed path from X to Y, then there is no causal effect.

• Example: Consider the following SEM

$$A = N_a, \quad B = A \oplus N_b, \quad C = B \oplus N_c,$$
$$A \to B \to C$$

where $N_a \simeq Ber(1/2)$, $N_b \sim Ber(1/3)$ and $N_c \sim Ber(1/20)$ are independent. \oplus denotes addition modulo 2 (i.e. $1 \oplus 1 = 0$)

•
$$\mathbb{P}_{\mathcal{S}}(B|do(C=1)) = \mathbb{P}(B)$$

- $\mathbb{P}_{\mathcal{S}}(B|do(A=1)) = Ber(2/3) \neq \mathbb{P}(B)$
- There are causal effects from A to B and A to C.

conterfactual SEM: Consider an SEM S := (S, P^N) over nodes X.
 Given some observations x, we define a counterfactual SEM by replacing the distribution of noise variables:

$$\mathcal{S}_{X=x} := (S, \mathbb{P}^N_{\mathcal{S}, X=x})$$

•
$$\mathbb{P}^{N}_{\mathcal{S},X=x} = \mathbb{P}^{N|X=x}_{\mathcal{S}}$$

• The new set of noises need not be independent.

conterfactual SEM: Consider an SEM S := (S, P^N) over nodes X.
 Given some observations x, we define a counterfactual SEM by replacing the distribution of noise variables:

$$\mathcal{S}_{X=x} := (S, \mathbb{P}^N_{\mathcal{S}, X=x})$$

- $\mathbb{P}^{N}_{\mathcal{S},X=x} = \mathbb{P}^{N|X=x}_{\mathcal{S}}$
- The new set of noises need not be independent.
- *Counterfactual statements* can be seen as do-statements in the new conterfactual SEM.

$$X = N_x, \quad Y = X^2 + N_y, \quad Z = 2Y + X + N_z$$

where $N_x, N_y, N_z \sim \mathcal{N}(0, 1)$.

• Suppose we observe (x, y, z) = (1, 2, 4)

$$X = N_x, \quad Y = X^2 + N_y, \quad Z = 2Y + X + N_z$$

where $N_x, N_y, N_z \sim \mathcal{N}(0, 1).$

$$X = N_x, \quad Y = X^2 + N_y, \quad Z = 2Y + X + N_z$$

where N_x , N_y , $N_z \sim \mathcal{N}(0, 1)$.

- Suppose we observe (*x*, *y*, *z*) = (1, 2, 4)
- $\mathbb{P}_{S}^{N|(1,2,4)}$ puts a point mass on $(N_{x}, N_{y}, N_{z}) = (1, 1, -1).$
- counterfactual statement: "Z would have been 11, had X been 2." means P^{Z|do(X=2)}_{S(1,2,4)} is a point mass on 11.

$$X = N_x, \quad Y = X^2 + N_y, \quad Z = 2Y + X + N_z$$

where $N_x, N_y, N_z \sim \mathcal{N}(0, 1)$.

- Suppose we observe (x, y, z) = (1, 2, 4) $\mathbb{D}^{N|(1,2,4)}$
- $\mathbb{P}_{\mathcal{S}}^{N|(1,2,4)}$ puts a point mass on $(N_x, N_y, N_z) = (1, 1, -1)$.
- counterfactual statement: "Z would have been 11, had X been 2." means P^{Z|do(X=2)}_{S,(1,2,4)} is a point mass on 11.
- "Y would have been 5, had X been 2."
- "Z would have been 11, had Y been 5."

- Graphical models can encode a set of conditional dependence and independence of variables.
- Markov property enables us to read off CI from a graph.
- **Faithfulness** allows us to read off graphical property (d-separation) from CI.

- Graphical models can encode a set of conditional dependence and independence of variables.
- Markov property enables us to read off CI from a graph.
- Faithfulness allows us to read off graphical property (d-separation) from CI.
- **Example:** $\mathbb{P}(X_1, X_2, X_3, X_4) = \mathbb{P}(X_1)\mathbb{P}(X_2|X_1)\mathbb{P}(X_3|X_1, X_2)\mathbb{P}(X_4|X_3)$

- Graphical models can encode a set of conditional dependence and independence of variables.
- Markov property enables us to read off CI from a graph.
- **Faithfulness** allows us to read off graphical property (d-separation) from CI.
- **Example:** $\mathbb{P}(X_1, X_2, X_3, X_4) = \mathbb{P}(X_1)\mathbb{P}(X_2|X_1)\mathbb{P}(X_3|X_1, X_2)\mathbb{P}(X_4|X_3)$

- CI: $X_4 \perp X_1 | X_3, X_4 \perp X_2 | X_3.$
- From the graph: X_1 and X_4 are "d-separated" by X_3 .

$$i \rightarrow j \leftarrow k$$

j is called a **collider**.

$$i \rightarrow j \leftarrow k$$

j is called a **collider**.

• **Blocked path**: In a DAG, a path between i_1 and i_n is blocked by a set S (with neither i_1 nor i_n in S) whenever there is a node i_k , such that one of the following happens:

• $i_k \in S$ and $i_{k-1} \rightarrow i_k \rightarrow i_{k+1}$ or $i_{k-1} \leftarrow i_k \leftarrow i_{k+1}$ or $i_{k-1} \leftarrow i_k \rightarrow i_{k+1}$. • $i_{k-1} \rightarrow i_k \leftarrow i_{k+1}$ and neither i_k nor any of its descendants is in S.

$$i \rightarrow j \leftarrow k$$

j is called a **collider**.

• **Blocked path**: In a DAG, a path between i_1 and i_n is blocked by a set S (with neither i_1 nor i_n in S) whenever there is a node i_k , such that one of the following happens:

• **D-separation**: Two disjoint subsets of vertices *A* and *B* are d-separated by a third (also disjoint) subset *S* if every path between nodes in *A* and *B* is blocked by *S*.

$$i \rightarrow j \leftarrow k$$

j is called a **collider**.

• **Blocked path**: In a DAG, a path between i_1 and i_n is blocked by a set S (with neither i_1 nor i_n in S) whenever there is a node i_k , such that one of the following happens:

- **D-separation**: Two disjoint subsets of vertices A and B are d-separated by a third (also disjoint) subset S if every path between nodes in A and B is blocked by S.
- Unblocked path: a path can be traced without traversing colliding (head to head) arrows.

D-separation

• Three nodes are called an *immorality* or a *v-structure* if one node is a child of the two others that themselves are not adjacent.

$$i \rightarrow j \leftarrow k$$

j is called a **collider**.

• **Blocked path**: In a DAG, a path between i_1 and i_n is blocked by a set S (with neither i_1 nor i_n in S) whenever there is a node i_k , such that one of the following happens:

- **D-separation**: Two disjoint subsets of vertices *A* and *B* are d-separated by a third (also disjoint) subset *S* if every path between nodes in *A* and *B* is blocked by *S*.
- Unblocked path: a path can be traced without traversing colliding (head to head) arrows.
- Given a DAG *G*, we obtain the undirected *moralized* graph *G^{mor}* of *G* by connecting the parents of each node and removing the directions of the edges.

- Markov property Given a DAG G and a joint distribution \mathbb{P}^X , this distribution is said to satisfy
 - the global Markov property with respect to the DAG G if

```
A, B d-separated by C \Rightarrow A \parallel B \mid C
```

for all disjoint sets A, B, C.

- Markov property Given a DAG G and a joint distribution \mathbb{P}^X , this distribution is said to satisfy
 - the global Markov property with respect to the DAG G if

A, B d-separated by $C \Rightarrow A \parallel B \mid C$

for all disjoint sets A, B, C.

• the *local Markov* property with respect to the DAG *G* if each variable is independent of its non-descendants given its parents

Markov Properties

- Markov property Given a DAG G and a joint distribution \mathbb{P}^X , this distribution is said to satisfy
 - the global Markov property with respect to the DAG G if

```
A, B d-separated by C \Rightarrow A \perp B \mid C
```

for all disjoint sets A, B, C.

- the *local Markov* property with respect to the DAG *G* if each variable is independent of its non-descendants given its parents
- the Markov factorization property with respect to the DAG G if

$$\mathbb{P}(X_1,...,X_p) = \prod_{i=1}^p \mathbb{P}(X_i|X_{PA_i})$$

where X_{PA_i} denotes the parents of node i in DAG G.

Markov Properties

- Markov property Given a DAG G and a joint distribution \mathbb{P}^X , this distribution is said to satisfy
 - the global Markov property with respect to the DAG G if

A, B d-separated by $C \Rightarrow A \parallel B \mid C$

for all disjoint sets A, B, C.

- the *local Markov* property with respect to the DAG *G* if each variable is independent of its non-descendants given its parents
- the Markov factorization property with respect to the DAG G if

$$\mathbb{P}(X_1,...,X_p) = \prod_{i=1}^p \mathbb{P}(X_i|X_{PA_i})$$

where X_{PA_i} denotes the parents of node i in DAG G.

• For distributions with positive continuous densities, the global and local property are equivalent.

• Example: In the following DAG, we have

- X_2 and X_3 are d-separated by $X_1, \Rightarrow X_2 \perp X_3 | X_1$
- X_1 and X_4 are d-separated by $\{X_2, X_3\}, \Rightarrow X_1 \perp \!\!\!\perp X_4 | X_2, X_3$
- $\mathbb{P}(X) = \mathbb{P}(X_3)\mathbb{P}(X_1|X_3)\mathbb{P}(X_2|X_1)\mathbb{P}(X_4|X_2,X_3)$

• Markov equivalence class of graphs We denote by $\mathcal{M}(G)$ the set of distributions that are Markov with respect to G:

 $\mathcal{M}(G) := \{\mathbb{P} : \text{ satisfies the global (or local) Markov property w.r.t.} G\}$

• Two DAGs G_1 and G_2 are Markov equivalent if $\mathcal{M}(G_1) = \mathcal{M}(G_2)$.

• Markov equivalence class of graphs We denote by $\mathcal{M}(G)$ the set of distributions that are Markov with respect to G:

 $\mathcal{M}(G) := \{\mathbb{P} : \text{ satisfies the global (or local) Markov property w.r.t.} G\}$

• Two DAGs G_1 and G_2 are Markov equivalent if $\mathcal{M}(G_1) = \mathcal{M}(G_2)$.

Theorem [Verma and Pearl, 1991]

Two DAGs are Markov equivalent if and only if they have the same skeleton and the same immoralities.

• Example: Next two DAGs are Markov equivalent.

p	number of DAGs with p nodes
1	1
2	3
3	25
4	543
5	29281
6	3781503
7	1138779265
8	783702329343
9	1213442454842881
10	4175098976430598143
11	31603459396418917607425
12	521939651343829405020504063
13	18676600744432035186664816926721
14	1439428141044398334941790719839535103
15	237725265553410354992180218286376719253505
16	83756670773733320287699303047996412235223138303
17	62707921196923889899446452602494921906963551482675201
18	99421195322159515895228914592354524516555026878588305014783
19	332771901227107591736177573311261125883583076258421902583546773505
20	2344880451051088988152559855229099188899081192234291298795803236068491263

• Consider a graph G = (V, E) and a target node Y . The Markov blanket of Y is the smallest set M such that

Y d-sep. $V \setminus (\{Y\} \cup M)$ given M.

• If \mathbb{P}^X is Markov w.r.t. *G*, then

 $Y _ U \setminus (\{Y\} \cup M) | M$

Markov Blanket

• Consider a graph G = (V, E) and a target node Y. The Markov blanket of Y is the smallest set M such that

Y d-sep. $V \setminus (\{Y\} \cup M)$ given M.

• If \mathbb{P}^X is Markov w.r.t. *G*, then

 $Y \underline{\parallel} V \setminus (\{Y\} \cup M) | M$

Markov Blanket

The Markov blanket of a node is the set of nodes consisting of its parents, its children, and any other parents of its children.

• Example:

- Markov blanket of Z is $M_Z := \{T, R, Y\}$, because Z is d-sep. from $\{X, W\}$ by M_Z .
- What is the Markov blanket of R?

• **Definition:** \mathbb{P}^X is said to be *faithful* to the DAG *G* if $A \perp\!\!\!\perp B | C \Rightarrow A, B$ d-sep. by *C*

for all disjoint sets A, B, C.

• **Definition:** \mathbb{P}^X is said to be *faithful* to the DAG *G* if

$$A \parallel B \mid C \Rightarrow A, B$$
 d-sep. by C

for all disjoint sets A, B, C.

 Markov assumption enables us to read off independence from a graph. Faithfulness allows us to infer dependencies from the graph¹.

$$^{1}p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

• **Definition:** \mathbb{P}^X is said to be *faithful* to the DAG *G* if

$$A \perp\!\!\!\perp B | C \Rightarrow A, B$$
 d-sep. by C

for all disjoint sets A, B, C.

- Markov assumption enables us to read off independence from a graph. Faithfulness allows us to infer dependencies from the graph¹.
- A distribution satisfies *causal minimality* with respect to *G* if it is Markov with respect to *G*, but not to any proper subgraph of *G*.

$$^{1}p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

$$X = N_X, \quad Y = aX + N_Y, \quad Z = bY + cX + N_Z,$$

where $N_X \sim \mathcal{N}(0, \sigma_x^2), N_Y \sim \mathcal{N}(0, \sigma_y^2),$ and $N_Z \sim \mathcal{N}(0, \sigma_z^2).$
 $G_1: \qquad Y \xrightarrow[b]{a} Z$

$$X = N_X, \quad Y = aX + N_Y, \quad Z = bY + cX + N_Z,$$

where $N_X \sim \mathcal{N}(0, \sigma_x^2)$, $N_Y \sim \mathcal{N}(0, \sigma_y^2)$, and $N_Z \sim \mathcal{N}(0, \sigma_z^2)$.

 if ab + c = 0, the distribution is not faithful with respect to G₁ since we obtain X⊥⊥Z

$$\mathbb{E}[(X - \mu_X)(Z - \mu_Z)] = \mathbb{E}[XZ] = (ac + b)\mathbb{E}[X^2] = 0$$

$$X = \tilde{N}_X, \quad Y = \tilde{a}X + \tilde{b}Z + \tilde{N}_Y, \quad Z = \tilde{N}_Z,$$

where $\tilde{N}_X \sim \mathcal{N}(0, \delta_x^2)$, $\tilde{N}_Y \sim \mathcal{N}(0, \delta_y^2)$, and $\tilde{N}_Z \sim \mathcal{N}(0, \delta_z^2)$.
$$G_2: \qquad Y \stackrel{\tilde{a}}{\Leftarrow} \stackrel{X}{\underbrace{b}} Z$$

$$X = \tilde{N}_X, \quad Y = \tilde{a}X + \tilde{b}Z + \tilde{N}_Y, \quad Z = \tilde{N}_Z,$$

where $\tilde{N}_X \sim \mathcal{N}(0, \delta_x^2)$, $\tilde{N}_Y \sim \mathcal{N}(0, \delta_y^2)$, and $\tilde{N}_Z \sim \mathcal{N}(0, \delta_z^2)$.

If we choose

$$\begin{split} \delta_X^2 &= \sigma_X^2, \ \tilde{a} = a, \ \delta_Z^2 = b^2 \sigma_Y^2 + \sigma_Z^2 \\ \tilde{b} &= (b\sigma_Y^2)/(b^2 \sigma_Y^2 + \sigma_Z^2), \ \delta_Y^2 = \sigma_Y^2 - (b^2 \sigma_Y^4)/(b^2 \sigma_Y^2 + \sigma_Z^2) \end{split}$$

$$X = \tilde{N}_X, \quad Y = \tilde{a}X + \tilde{b}Z + \tilde{N}_Y, \quad Z = \tilde{N}_Z,$$

where $\tilde{N}_X \sim \mathcal{N}(0, \delta_x^2)$, $\tilde{N}_Y \sim \mathcal{N}(0, \delta_y^2)$, and $\tilde{N}_Z \sim \mathcal{N}(0, \delta_z^2)$.

If we choose

$$\begin{split} \delta_X^2 &= \sigma_X^2, \ \tilde{a} = a, \ \delta_Z^2 = b^2 \sigma_Y^2 + \sigma_Z^2 \\ \tilde{b} &= (b\sigma_Y^2)/(b^2 \sigma_Y^2 + \sigma_Z^2), \ \delta_Y^2 = \sigma_Y^2 - (b^2 \sigma_Y^4)/(b^2 \sigma_Y^2 + \sigma_Z^2) \end{split}$$

 then both SEMs will lead to the same covariance matrix and the same observational distribution.

$$\Sigma = \begin{pmatrix} \sigma_X^2 & a\sigma_X^2 & 0 \\ a\sigma_X^2 & a^2\sigma_X^2 + \sigma_Y^2 & b\sigma_Y^2 \\ 0 & b\sigma_Y^2 & b^2\sigma_Y^2 + \sigma_Z^2 \end{pmatrix}$$

$$X = \tilde{N}_X, \ Y = \tilde{a}X + \tilde{b}Z + \tilde{N}_Y, \ Z = \tilde{N}_Z,$$

where $\tilde{N}_X \sim \mathcal{N}(0, \delta_x^2)$, $\tilde{N}_Y \sim \mathcal{N}(0, \delta_y^2)$, and $\tilde{N}_Z \sim \mathcal{N}(0, \delta_z^2)$.

If we choose

$$\begin{split} \delta_X^2 &= \sigma_X^2, \ \tilde{a} = a, \ \delta_Z^2 = b^2 \sigma_Y^2 + \sigma_Z^2 \\ \tilde{b} &= (b\sigma_Y^2)/(b^2 \sigma_Y^2 + \sigma_Z^2), \ \delta_Y^2 = \sigma_Y^2 - (b^2 \sigma_Y^4)/(b^2 \sigma_Y^2 + \sigma_Z^2) \end{split}$$

• then both SEMs will lead to the same covariance matrix and the same observational distribution.

$$\Sigma = \begin{pmatrix} \sigma_X^2 & a\sigma_X^2 & 0\\ a\sigma_X^2 & a^2\sigma_X^2 + \sigma_Y^2 & b\sigma_Y^2\\ 0 & b\sigma_Y^2 & b^2\sigma_Y^2 + \sigma_Z^2 \end{pmatrix}$$

• However, the distribution is faithful with respect to G_2 if $\tilde{a}, \tilde{b} \neq 0$ and all $\delta^2 > 0$.

• Consider an SEM S,

$$X_j = f_j(PA_j, N_j)$$

• Due to the Markov property, we have

$$\mathbb{P}_{\mathcal{S}}(X) = \prod_{i=1}^{p} \mathbb{P}(X_{i}|X_{PA_{j}})$$

• Consider an SEM S,

$$X_j = f_j(PA_j, N_j)$$

• Due to the Markov property, we have

$$\mathbb{P}_{\mathcal{S}}(X) = \prod_{i=1}^{p} \mathbb{P}(X_i | X_{PA_j})$$

• Now consider the SEM \tilde{S} after $do(X_k = \tilde{N}_k)$ with $\tilde{N}_k \sim \tilde{p}(X_k)$,

$$\mathbb{P}_{\mathcal{S},do(X_k=\tilde{N}_k)}(X) = \tilde{\rho}(X_k) \prod_{j \neq k} \mathbb{P}(X_j | X_{PA_j})$$

Do operation

• Consider an SEM S,

$$X_j = f_j(PA_j, N_j)$$

• Due to the Markov property, we have

$$\mathbb{P}_{\mathcal{S}}(X) = \prod_{i=1}^{p} \mathbb{P}(X_j | X_{PA_j})$$

• Now consider the SEM \tilde{S} after $do(X_k = \tilde{N}_k)$ with $\tilde{N}_k \sim \tilde{\rho}(X_k)$,

$$\mathbb{P}_{S,do(X_k=\tilde{N}_k)}(X) = \tilde{\rho}(X_k) \prod_{j \neq k} \mathbb{P}(X_j | X_{PA_j})$$

• Perfect intervention: $do(X_k = a)$

$$\mathbb{P}_{S,do(X_k=a)}(X) = \begin{cases} \prod_{j \neq k} \mathbb{P}(X_j | X_{PA_j}) & X_k = a \\ 0 & \text{Otherwise} \end{cases}$$
(1)

- **Example:** Consider the Simpson's paradox in which all variables are binary.
- T: Treatment, Z: size of stone, R: recovery

	Overall	Patients with small stones	Patients with large stones
Treatment A: Open surgery	78% (273/350)	93% (81/87)	73 % (192/263)
Treatment B: Percutaneous nephrolithotomy	83% (289/350)	87% (234/270)	69% (55/80)

• We are interested in

$$\mathbb{P}_{S}(R = 1 | do(T = A))$$
$$\mathbb{P}_{S}(R = 1 | do(T = B))$$

• We have

$$\mathbb{P}_{S}(R = 1 | do(T = A)) = \sum_{z=0}^{1} \mathbb{P}_{S,do(T=A)}(R = 1, Z = z, T = A)$$
$$= \sum_{z=0}^{1} \mathbb{P}_{S,do(T=A)}(R = 1 | Z = z, T = A) \mathbb{P}_{S,do(T=A)}(Z = z, T = A)$$
$$= \sum_{z=0}^{1} \mathbb{P}_{S}(R = 1 | T = A, Z = z) \mathbb{P}_{S}(Z = z | do(T = A))$$
$$= \sum_{z=0}^{1} \mathbb{P}_{S}(R = 1 | T = A, Z = z) \mathbb{P}_{S}(Z = z)$$

• We have

$$\mathbb{P}_{S}(R = 1 | do(T = A)) = \sum_{z=0}^{1} \mathbb{P}_{S,do(T=A)}(R = 1, Z = z, T = A)$$
$$= \sum_{z=0}^{1} \mathbb{P}_{S,do(T=A)}(R = 1 | Z = z, T = A) \mathbb{P}_{S,do(T=A)}(Z = z, T = A)$$
$$= \sum_{z=0}^{1} \mathbb{P}_{S}(R = 1 | T = A, Z = z) \mathbb{P}_{S}(Z = z | do(T = A))$$
$$= \sum_{z=0}^{1} \mathbb{P}_{S}(R = 1 | T = A, Z = z) \mathbb{P}_{S}(Z = z)$$

• The last step uses the perfect intervention formula in (1)

We have

$$\mathbb{P}_{S}(R = 1 | do(T = A)) = \sum_{z=0}^{1} \mathbb{P}_{S,do(T=A)}(R = 1, Z = z, T = A)$$
$$= \sum_{z=0}^{1} \mathbb{P}_{S,do(T=A)}(R = 1 | Z = z, T = A) \mathbb{P}_{S,do(T=A)}(Z = z, T = A)$$
$$= \sum_{z=0}^{1} \mathbb{P}_{S}(R = 1 | T = A, Z = z) \mathbb{P}_{S}(Z = z | do(T = A))$$
$$= \sum_{z=0}^{1} \mathbb{P}_{S}(R = 1 | T = A, Z = z) \mathbb{P}_{S}(Z = z)$$

The last step uses the perfect intervention formula in (1)
Using the values in the table, we obtain

$$\mathbb{P}_{S}(R = 1 | do(T = A)) \approx 0.93. \frac{357}{700} + 0.73. \frac{343}{700} = 0.832$$
$$\mathbb{P}_{S}(R = 1 | do(T = B)) \approx 0.87. \frac{357}{700} + 0.69. \frac{343}{700} = 0.782$$

• But $\mathbb{P}_{S}(R=1|T=A) = 0.78$,

• A major complication is the possibility of inconsistent parameter estimation due to the existence of hidden confounders.

- A major complication is the possibility of inconsistent parameter estimation due to the existence of hidden confounders.
- The *instrumental variables* method provides a way to nonetheless obtain consistent parameter estimates.

- A major complication is the possibility of inconsistent parameter estimation due to the existence of hidden confounders.
- The *instrumental variables* method provides a way to nonetheless obtain consistent parameter estimates.
- We explain this method through a simple example.

- A major complication is the possibility of inconsistent parameter estimation due to the existence of hidden confounders.
- The *instrumental variables* method provides a way to nonetheless obtain consistent parameter estimates.
- We explain this method through a simple example.
- **Example:** Consider the following causal structure in which *A* is a hidden confounder.

 $Y(\log \text{ earning}) = \alpha + \rho S(\text{Schooling years}) + \gamma A(\text{Individual ability}) + N_Y(\text{noise})$

Instrumental variable

- A major complication is the possibility of inconsistent parameter estimation due to the existence of hidden confounders.
- The *instrumental variables* method provides a way to nonetheless obtain consistent parameter estimates.
- We explain this method through a simple example.
- **Example:** Consider the following causal structure in which *A* is a hidden confounder.

 $\mathsf{Y}(\mathsf{log earning}) = \alpha + \rho \mathsf{S}(\mathsf{Schooling years}) + \gamma \mathsf{A}(\mathsf{Individual ability}) + \mathsf{N}_{\mathsf{Y}}(\mathsf{noise})$

- Interested in finding the influence of S on Y, i.e., finding ρ.
- No unbiased estimator exists for ρ : $\widehat{\rho} := \frac{Cov(Y,S)}{Var(S)} == \frac{Cov(Y=\alpha+\rho S+\gamma A+N_Y,S)}{Var(S)} = \rho + \gamma \frac{Cov(A,S)}{Var(S)}.$

- Now, consider the following graph in which
 - A is a hidden confounder.
 - Z is a variable such that

 $Cov(Z, S) \neq 0$ (First stage restriction criterion)

 $Cov(Z, \gamma A + N_Y) = 0$ (Exclusion Restriction).

- Now, consider the following graph in which
 - A is a hidden confounder.
 - Z is a variable such that

 $Cov(Z, S) \neq 0$ (First stage restriction criterion)

 $Cov(Z, \gamma A + N_Y) = 0$ (Exclusion Restriction).

• Interested in finding ρ .

- Now, consider the following graph in which
 - A is a hidden confounder.
 - Z is a variable such that

 $Cov(Z, S) \neq 0$ (First stage restriction criterion)

 $Cov(Z, \gamma A + N_Y) = 0$ (Exclusion Restriction).

- Interested in finding ρ .
- In this model, variable Z (also called *Instrumental Variable*) can help to estimate ρ .

• In this model, we have

$$S = \beta Z + \delta A + N_S,$$

$$Y = \alpha + \rho S + \gamma A + N_Y.$$

• In this model, we have

$$S = \beta Z + \delta A + N_S,$$

$$Y = \alpha + \rho S + \gamma A + N_Y.$$

• First, estimate $\rho\beta$: $\widehat{\rho\beta} := \frac{Cov(Y,Z)}{Var(Z)}$.

• In this model, we have

$$S = \beta Z + \delta A + N_S,$$

$$Y = \alpha + \rho S + \gamma A + N_Y.$$

- First, estimate $\rho\beta$: $\widehat{\rho\beta} := \frac{Cov(Y,Z)}{Var(Z)}$.
- Second, estimate β : $\widehat{\beta} := \frac{Cov(S,Z)}{Var(Z)}$.

In this model, we have

$$S = \beta Z + \delta A + N_S,$$

$$Y = \alpha + \rho S + \gamma A + N_Y.$$

- First, estimate $\rho\beta$: $\widehat{\rho\beta} := \frac{Cov(Y,Z)}{Var(Z)}$.
- Second, estimate β : $\widehat{\beta} := \frac{Cov(S,Z)}{Var(Z)}$.
- Finally, estimate ρ : $\widehat{\rho} := \frac{\widehat{\rho\beta}}{\widehat{\beta}} = \frac{Cov(Y,Z)}{Cov(S,Z)}$.
- This is an unbiased estimator because

$$\widehat{\rho} = \frac{Cov(Y,Z)}{Cov(S,Z)} = \frac{Cov(\alpha + \rho S + \gamma A + N_Y,Z)}{Cov(S,Z)} = \rho + \frac{Cov(\gamma A + N_Y,Z)}{Cov(S,Z)}.$$

In this model, we have

$$S = \beta Z + \delta A + N_S,$$

$$Y = \alpha + \rho S + \gamma A + N_Y.$$

• First, estimate
$$\rho\beta$$
: $\widehat{\rho\beta} := \frac{Cov(Y,Z)}{Var(Z)}$

- Second, estimate β : $\widehat{\beta} := \frac{Cov(S,Z)}{Var(Z)}$.
- Finally, estimate ρ : $\widehat{\rho} := \frac{\widehat{\rho\beta}}{\widehat{\beta}} = \frac{Cov(Y,Z)}{Cov(S,Z)}$.
- This is an unbiased estimator because

$$\widehat{\rho} = \frac{Cov(Y,Z)}{Cov(S,Z)} = \frac{Cov(\alpha + \rho S + \gamma A + N_Y,Z)}{Cov(S,Z)} = \rho + \frac{Cov(\gamma A + N_Y,Z)}{Cov(S,Z)}.$$

According to the restrictions:

$$\frac{Cov(\gamma A + N_Y, Z)}{Cov(S, Z)} = 0$$

• Therefore, $\widehat{\rho} = \rho$.

- The goal is to infer the graph given a set of conditional dependence and independence tests.
- SGS Algorithm: developed by Sprites, Glymour and Scheives.

- The goal is to infer the graph given a set of conditional dependence and independence tests.
- SGS Algorithm: developed by Sprites, Glymour and Scheives.
- Consists of two phases
 - Learning the skeleton
 - 2 Learning the orientations

- The goal is to infer the graph given a set of conditional dependence and independence tests.
- SGS Algorithm: developed by Sprites, Glymour and Scheives.
- Consists of two phases
 - Learning the skeleton
 - 2 Learning the orientations
- SGS is based on two main assumptions
 - No hidden confounders
 - Graph is a DAG

• It is based on the following result.

Lemma

- Two nodes X, Y in a DAG (V, E) are adjacent iff they cannot be d-separated by any subset $S \subseteq V \setminus \{X, Y\}$.
- If two nodes X, Y in a DAG (V, E) are not adjacent, then they are d-separated by either PA_X or PA_Y .

• It is based on the following result.

Lemma

- Two nodes X, Y in a DAG (V, E) are adjacent iff they cannot be d-separated by any subset $S \subseteq V \setminus \{X, Y\}$.

- If two nodes X, Y in a DAG (V, E) are not adjacent, then they are d-separated by either PA_X or PA_Y .

Steps:

- Begin with a complete graph.
- Use conditional dependence and independence test to eliminate edges (edge elimination).

Estimation of skeleton

• It is based on the following result.

Lemma

- Two nodes X, Y in a DAG (V, E) are adjacent iff they cannot be d-separated by any subset $S \subseteq V \setminus \{X, Y\}$.

- If two nodes X, Y in a DAG (V, E) are not adjacent, then they are d-separated by either PA_X or PA_Y .

- Steps:
 - Begin with a complete graph.
 - Use conditional dependence and independence test to eliminate edges (edge elimination).
- There are different methods to perform CI tests, e.g., empirical methods, kernel-based methods. In general, CI tests are difficult to perform in practice.

Orientation of edges

Steps

- **1** Orient the immoralities (or v-structures) in the graph.
 - For structure X Y Z with no direct edge between X and Z.
 - Let S denotes the corresponding d-separation set for X and Z.
 - The structure X Y Z is an immorality and can be oriented as $X \rightarrow Y \leftarrow Z$ if and only if $Y \notin S$.
- We may be able to orient some further edges using e.g., Meek's orientation rules.

- If there exist a pair A, C not directly connected and exists node B such that $A \rightarrow B - C$, then, we can orient the 2nd arrow from B to C. - Avoid cycle.

- ...

Edge Elimination

- (zero Orders) Edge AE removed due to unshielded collider.
- (1st Orders) ABDF: A d-sep. F by D, Edge AF eliminated.
- BDF: B d-sep. F by D, Edge BF eliminated.
- CBDF: C d-sep. F by D, Edge CF eliminated.
- ECBDF: E d-sep. F by D, Edge EF eliminated.
- DBA: A d-sep. D by B, Edge DA eliminated.
- DBC: A d-sep. C by B, Edge DC eliminated.
- DBCE: D d-sep. E by B, Edge ED eliminated.
- (2nd Orders) BACE: B d-sep. E by $\{A, C\}$, Edge BE eliminated.

• Edge Orientation

- (Statistical Orientation) A ⊥ E, A / ⊥ C, E / ⊥ C, A / ⊥ E | C ⇒ ACE is a v-structure.
- (Logical Orientation) BCE: $C \rightarrow B$, otherwise unshielded collider.
- ABC: $A \rightarrow B$, otherwise cycle.
- ABD: $B \rightarrow D$, otherwise unshielded collider.
- BDF: $D \rightarrow F$, otherwise unshielded collider.

The End