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Introduction and Outline

Massive device connectivity is a key requirement for 5G cellular networks

Machine-type (M2M) communications, Internet of Things (IoT), Sensors...

Sporadic traffic with low latency requirement

Large number of devices but only a few are active at a time

This talk is about how to design such a network:

Sparsity device activity detection algorithms

Massive connectivity with massive MIMO

Scheduling and feedback in massive random access
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Main Messages

To support massive connectivity:

The use of non-orthogonal pilots is inevitable.

Compressed sensing techniques are indispensible for device detection.

Massive MIMO can significantly enhance device activity detection.

Channel estimation is the main bottleneck.

Cooperative detection across multiple cells further improves performance.

Scheduing and feedback are superior to uncoordinated random access.
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Massive Random Access

Cellular system with N users, but only K of which are active.

active users

inactive users

BS needs to detect which users are active, then their messages.

User activity pattern carries information. [Chen-Guo’14]

R + H(A) ≤ I (X ;Y ) (1)

We also need to take the cost of channel estimation into account.
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Fundamental Limit of Massive Random Access

For a massive device communications scenario Y = HAX + Z , the achievable sum
rate of data transmission across all the users is approximately bounded by

R . I (X ;Y |HA)− H(A)− I (HA;Y |X ). (2)

Interpretation:

I (X ;Y |HA): Transmission rate with known channels and activity pattern;

H(A): Information content of device activity pattern;

I (HA;Y |X ): Channel estimation and user activity detection.

Why? We see that R + H(A) ≤ I (X ;Y ).

I (HA,X ;Y ) = I (X ;Y ) + I (HA;Y |X ) (3)

= I (HA;Y ) + I (X ;Y |HA) (4)

Note that the I (HA;Y ) term is negligible.
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Cost of User Activity Detection

Traditional MIMO system [Zheng-Tse’02, Lozano-Heath-Andrew’12]:

R . I (X ;Y |H)− I (H;Y |X ). (5)

Massive connectivity system:

R . I (X ;Y |HA)− H(A)− I (HA;Y |X ). (6)

where the cost of user activity detection is:

H(A) = Nh

(
K

N

)
≈ log

(
N
K

)
≈ K log(N/K ). (7)
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User Activity Detection and Channel Estimation via Pilots

Active Users

Inactive Users

BS equipped with M antennas

N single-antenna devices, K of which are active at a time

Each device is associated with a length-L unique signature sequence sn
Channel hn of user n is assumed to be fixed during the L symbols.

For single-cell system, received signal Y ∈ CL×M at the BS is

Y =
N∑

n=1

αnsnhT
n + Z = SX + Z , (8)

where

αn ∈ {1, 0} activity indicator; Z ∈ CL×M Gaussian noise with variance σ2

S , [s1, . . . , sN ] ∈ CL×N ; X , [α1h1, · · · , αNhN ]T ∈ CN×M
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User Activity Detection via Compressed Sensing

Aim to identify the K non-zero rows of X from Y = SX + Z .

S
ig

n
a
tu

re
 

= +

Channel of Active User

Noise 

NM

L ...

= +

M

L

N

N

N

M

M

L

M

Multiple measurement vector (MMV) problem in compressed sensing

Columns of X share the same sparsity pattern, i.e., row sparsity

Efficiently solved by the approximate message passing (AMP) algorithm
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Practical Detector Design

Device Identification via Non-Orthogonal Pilots:

Due to large number of potential devices N, orthogonal pilot is not feasible.

Natural choice of pilot sequences: i.i.d. Gaussian signature

Approximate Message Passing (AMP) [Donoho-Maleki-Montanari’09]

Prior work on compressed sensing for massive connectivity:

Without channel estimation [Fletcher-Rangan-Goyal’09, Zhang-Luo-Guo’13]

Joint user activity detection and channel estimation: Orthogonal matching
pursuit [Schepker-Bockelmann-Dekorsy’13, Wunder-Jung-Ramadan’15,
Wunder-Boche-Strohmer-Jung’15], Baysian [Xu-Rao-Lau’15]

AMP is used for device detection in [Hannak-Mayer-Jung-Matz-Goertz’15].
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Single-Antenna Case
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Single-Antenna Case

A single-antenna BS, N devices randomly located in a cell of radius R,

y =
N∑

n=1

hnαnsn + w , Sx + z (9)

hn ∈ C: channel coefficient between user n and BS, including path-loss
fading, shadowing and Rayleigh fading static within each block;

αn ∈ {1, 0}: indicating whether user n is active

x , [h1α1, h2α2, · · · , hNαN ]T ∈ CN×1

sn ∈ CL×1: signature sequence of user n generated as i.i.d. CN (0, 1/L)

S , [s1, s2, · · · , sN ]T ∈ CL×N

z ∈ CL×1: effective noise following i.i.d. CN (0, σ2)
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Sparse Recovery Problem

Identify the columns that correspond to non-zero elements in x via

= +

LASSO formulation:

x̂ = arg min
1

2
‖y − Sx‖2

2 + λ‖x‖1 (10)

CoSaMP is computationally complex: Not scalable at N = 105.
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Soft Thresholding Function

Consider a special case of a single measurement of a scalar, LASSO is

x̂ = arg min
1

2
|y − x |22 + λ|x |1 (11)

The solution is explicitly given by

x̂ = η(y ;λ), (12)

where η is a soft thresholding function as

η(y ; θ) =


y − θ, y > θ

0, −θ ≤ y ≤ θ
y + θ, y < −θ

(13)
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Soft Thresholding Function

This denoiser is nearly minimax optimal:

η(y ; θ) =


y − θ, y > θ

0, −θ ≤ y ≤ θ
y + θ, y < −θ
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Figure: Soft thresholding function with θ = 1
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AMP via Graphical Model

Graphical model with message passing [Donoho-Maleki-Montanari’09]

x1 x2 x3 x4

y1 y2 y3

Vx1→y 1 Vy3→x 4

Main features:

Soft thresholding emerges in a minimax solution.

State evolution describes the progress in iteration.

Better denoiser design is possible by accounting for channel statistics.
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AMP Algorithm

Algorithm: Correlate, denoise, then iterate with the residual

x t+1 = η(x t + ST r t ;λ+ γt) (14)

r t = y − Sx t +
1

L
r t−1‖x t‖0, (15)

where the threshold satisfies

γt+1 =
λ+ γt

L
‖x t+1‖0 (16)

Note: the threshold γt+1 is fixed by the recursion.

Without the last “Onsager term”, this is the classical iterative soft thresholding.
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AMP Algorithm – General Form

Recover x from y via AMP algorithm (complex case)

x t+1 = ηt(S∗r t + x t)

r t+1 = y − Sx t+1 +
r t

δ
〈η′t(S

∗r t + x t)〉

x t : estimate of x at iteration t

r t : residual at iteration t

ηt(·): for soft thresholding, ηt(·) = η(·, θ 1√
L
‖r t‖2), where θ is free parameter

η′t(·): first order derivative of ηt(·)
δ , L

N : undersampling ratio

〈·〉: averaging operation over all entries of a vector
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State Evolution of AMP

The performance of AMP at each iteration can be predicted in the asymptotic
regime where L→∞,N →∞ with fixed L

N

S∗r t + x t can be modeled as signal plus noise, i.e., x + v t

v t is i.i.d. Gaussian noise with variance τt tracked by state evolution equation

τ 2
t+1 = σ2

w +
1

δ
E|ηt(X + τtW )− X |2 (17)

X : random variable following the same distribution as x
W : random variable following CN (0, 1)
initialization: τ0 , σ2

w + 1
δ
E|X |2

Interpretation of state evolution: vector estimation y = Sx + w is reduced to
uncoupled scalar estimation (x t + (S∗r t)i = xi + v t

i
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Denoiser for AMP

Complex soft thresholding denoiser:

ηsoftt (x̃ t) ,

(
x̃ t − θτt

x̃ t

|x̃ t |

)
I(|x̃ t | > θτt) (18)

θ: threshold control parameter

τt : noise variance, estimated by τ̂t = 1√
L
‖r t‖2

I(·): indicator function
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The above is the classical minimax denoiser based on soft thresholding.

Better MMSE denoiser can be designed while accounting for channel distribution:

ηmmse
t (x̃ t) , E(X |X̃ t = x̃ t) (19)

where X̃ t is the random variable defined as X̃ t , X + τtW .
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Comparison of Denoisers
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Figure: Soft thresholding denoiser and MMSE denoiser
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User Activity Detection

Recall the signal plus noise model in AMP: (S∗r t + x t)i = xi + v t
i , which can be

re-expressed as X̃ t = X + τtW via random variables X̃ t ,X ,W

Consider the hypothesis testing problem{
H0 : X = 0, user is inactive

H1 : X 6= 0, user is active
(20)

The optimal decision rule

LLR = log

(
pX̃ t |X (x̃ t |x 6= 0)

pX̃ t |X (x̃ t |x = 0)

)
H0

≶
H1

lth (21)

LLR: log-likelihood ratio

lth: decision threshold determined by the detection criterion.
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Analysis of Detection Error Probability

By state evolution, the likelihood distribution given X can be derived as:

pX̃ t |X (x̃ t |x = 0) =
1

πτ 2
t

exp

(
−|x̃

t |2

τ 2
t

)
(22)

pX̃ t |X (x̃ t |x 6= 0) = a

∫ ∞
0

erfc(b ln z + c)

zγ(z2 + τ 2
t )

exp

(
−|x̃ t |2

z2 + τ 2
t

)
dz (23)

The log-likelihood ratio is computed as

LLR = log

∫ ∞
0

aπτ 2
t z
−γ

z2 + τ 2
t

erfc(b ln z + c) exp(|x̃ t |2∆)dz (24)

∆ , 1
τ 2
t
− 1

z2+τ 2
t

LLR is monotonic in |x̃ t |
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Missed Detection vs. False Alarm Probabilities

Based on the monotonicity, we simplify the decision rule as

|x̃ t |
H0

≶
H1

l ′th (25)

The false alarm and missed detection probabilities:

P t
F =

∫
|x̃ t |>l′th

pX̃ t |X (x̃ t |x = 0)dx̃ t (26)

P t
M =

∫
|x̃ t |<l′th

pX̃ t |X (x̃ t |x 6= 0)dx̃ t (27)

Decision is based on the amplitude of x̃

Trade-off between P t
F and P t

M is achieved by adjusting l ′th
P t
F and P t

M depend on noise variance τt (τ∞ after converging), which can be
tracked via the AMP state evolution
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Simulation Parameters

User number N 4000
Cell radius R 1000m

Activity probability ε 0.05
Signature sequence length L 800

Pathloss parameter α 15.3
Pathloss parameter β 37.6

Shadowing parameter σSF 8 dB
Background noise power -99 dBm

Transmission power 5, 15, 25 dBm
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Missed Detection vs. False Alarm
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CoSaMP, Tx power 5dBm
AMP simulated, Tx power 5dBm
AMP predicted, Tx power 5dBm
lower bound, Tx power 5dB
CoSaMP, Tx power 15dBm
AMP simulated, Tx power 15dBm
AMP predicted, Tx power 15dBm
lower bound, Tx power 15dB
CoSaMP, Tx power 25dBm
AMP simulated, Tx power 25dBm
AMP predicted, Tx power 25dBm
lower bound, Tx power 25dB

Small mismatch of predicted vs simulated curves due to neglecting shadowing
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AMP Performance vs. SNR
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soft thresholding denoiser, L = 800

Threshold for MMSE denoiser is better than soft thresholding denoiser.
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Multi-Antenna Case
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Multiple Antennas at the BS

= +L

NM

Multiple measurement vector (MMV) problem

Better performance than single measurement vector (SMV)

Asymptotic analysis: Fix M, let N,K , L→∞, ε = K
N , δ = L

N ,

Main insight: Perfect user detection is possible when M →∞!

But, the multi-antenna case is also more challenging:

(i) convergence is slower;
(ii) channel estimation error.
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Two-Phase Transmission

Pilot Transmission Phase

Due to large number of devices, non-orthogonal pilots are inevitable.
The same pilots can be used for both activity detection and channel
estimation.

Data Transmission Phase

The achievable rates are limited by the channel estimation error.
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Signal Model in Pilot Phase

Received signal in pilot phase:

Y =
√
ξ

N∑
n=1

αnsnhT
n + Z ,

√
ξSX + Z (28)

ξ = ρpilotL: total transmit energy in pilot phase

hn ∈ CM×1: channel coefficient between user n and BS, including path-loss
fading, shadowing and Rayleigh fading static within each block;

αn ∈ {1, 0}: indicating whether user n is active

X , [h1α1,h2α2, · · · ,hNαN ]T ∈ CN×M

sn ∈ CL×1: signature sequence of user n following i.i.d. CN (0, 1/L)

S , [s1, s2, · · · , sN ]T ∈ CL×N

Z ∈ CL×M : effective noise following i.i.d. CN (0, σ2I )
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Vector Approximate Message Passing

Vector generalization of AMP works iteratively as follows:

x t+1
n = ηt,n((Rt)Hsn + x t

n)

Rt+1 = Y − SX t+1 +
1

δ
Rt

N∑
n=1

η′t,n((Rt)Hsn + x t
n)

N

where Rt = [r t1, · · · , r tL]T ∈ CL×M is the residual

Use MMSE denoise that accounts for channel distribution: (Here δ = L
N )

ηt,n(·): denoiser that depends on βn
η′t,n(·): first-order derivative of ηt,n(·)
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State Evolution

Performance analysis by state evolution for K ,N, L→∞ with L
N = δ

[Bayati-Montanari’11], [Kim-Chang-Jung-Baron-Ye’11], [Rangan’11]:

Σt+1 =
σ2

ξ
I +

1

δ
E
[

(ηt,β(Xβ + Σ
1
2
t V )− Xβ)(ηt,β(Xβ + Σ

1
2
t V )− Xβ)H

]
(29)

AMP is statistically equivalent to applying the denoiser to

x̂ t,n = xn + Σ
1
2
t vn = αnhn + Σ

1
2
t vn (30)

MMSE denoiser:

ηt,n(x̂ t,n) = φt,nβn(βnI + Σt)
−1x̂ t,n (31)

φt,n =
1

1 + 1−ε
ε exp

(
−M

2 (πt,n − ψt,n)
) (32)

πt,n =
x̂H
t,n(Σ−1

t − (Σt + βnI )−1)x̂ t,n

M
(33)

ψt,n =
log det(I + βnΣ−1

t )

M
(34)
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Simplified MMSE Denoiser

With i.i.d. fading, Σt+1 is a diagonal matrix with identical diagonal entries

Σt = τ 2
t I

MMSE denoiser reduces to

ηt,n(x̂ t,n) = φt,n
βn

βn + τ 2
t

x̂ t,n (35)

φt,n =
1

1 + 1−ε
ε exp

(
−M

2 (πt,n − ψt,n)
) (36)

πt,n =

(
1
τ 2
t
− 1

τ 2
t +βn

)
x̂H
t,nx̂ t,n

M
(37)

ψt,n = log

(
1 +

βn
τ 2
t

)
(38)

Asymptotically as M →∞, φt,n is either 0 or 1 depending on whether device
n is active or not.
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Massive MIMO Guarantees Perfect Activity Detection

Theorem: A massive MIMO system can detect device activities perfectly, i.e.,

lim
M→∞

P t,n
M (M) = lim

M→∞
P t,n
F (M) = 0

Proof: By strong law of large numbers:

πt,n →
{
βn/τ

2
t , if αn = 1

βn/(βn + τ 2
t ), if αn = 0

The proof follows as a > log(1 + a) > a
1+a for all a > 0.

What is the cost of massive connectivity?
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Channel Estimation Error

Covariance of estimated channel ĥt,k : Cov(ĥt,k , ĥt,k) = υt,k(M)I

Covariance of channel estimation error ∆ht,k = ht,k − ĥt,k

Cov(∆ht,k ,∆ht,k) = ∆υt,k(M)I (39)

As M →∞

lim
M→∞

υk(M) =
β2
k

βk + τ 2
∞

(40)

lim
M→∞

∆υk(M) =
βkτ

2
∞

βk + τ 2
∞

(41)

where τ 2
∞ is the fixed-point solution to state evolution: (ε = K

N , δ = L
N )

τ 2
t+1 =

σ2

ξ
+
ε

δ
Eβ
[
βτ 2

t

β + τ 2
t

]
(42)

Assuming L > K and high SNR, then τ 2
∞ → σ2

ξ(1− ε
δ ) .
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Data Transmission Phase

Consider a system with K users transmitting to BS with M antennas.

Received signal at the BS with estimated channel h̃k ’s:

y =
∑
k∈K

hk

√
ρdatauk + z =

∑
k∈K

h̃k

√
ρdatauk +

∑
k∈K

∆hk

√
ρdatauk + z

Maximum ratio combining:

ûk = wH
k h̃k

√
ρdatauk + wH

k

 ∑
n∈K,n 6=k

h̃n

√
ρdataun +

∑
n∈K

∆hn

√
ρdataun + z


The achievable rate of user k is [Hassibi-Hochwald’03]

Rk =
T − L

T
E[log2(1 + γk)], ∀k ∈ K,

where

γk =
ρdata|wH

k ĥk |2

ρdata
∑

n∈K,n 6=k

|wH
k ĥn|2 + ρdata‖w k‖2

∑
n∈K

βnτ 2
∞

βn+τ 2
∞

+ σ2‖w k‖2
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Achievable Rate with MMSE Beamforming

With MMSE: wMMSE
k =

(∑
n∈K

ρdataĥnĥ
H

n +
∑
n∈K

ρdataβnτ
2
∞

βn+τ 2
∞

I + σ2I
)−1

ĥk

lim
M→∞

γMMSE
k → β2

k

βk + τ 2
∞

Γ

where Γ is fixed-point solution to (µ = K
M ):

Γ =
1

µE
[

β2

β+τ 2
∞+β2Γ

]
+ µE

[
βτ 2

∞
β+τ 2

∞

]
In the special case of perfect CSI, the above result reduces to [Tse-Hanly’99]
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Cost of Massive Uncoordinated Access

Fixed number of K users:

γk →
β2
k

βk + σ2

ρpilotL

Γ (43)

1

Γ
=

1

M

∑
n∈K

β2
n

βn + σ2

ρpilotL
+ β2

nΓ
+

1

M

∑
n∈K

βnσ
2

ρpilotL

βn + σ2

ρpilotL

(44)

Massive number of N potential users with K active user:

γk →
β2
k

βk + τ 2
∞

Γ (45)

1

Γ
=

1

M

∑
n∈K

β2
n

βn + τ 2
∞ + β2

nΓ
+

1

M

∑
n∈K

βnτ
2
∞

βn + τ 2
∞

(46)

At high SNR: τ 2
∞ ≈ σ2

ρpilot(L−K)

Channel estimation error is increased due to the non-orthogonal pilots
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Numerical Example

active users

inactive users

N = 2000 users

K = 100 active users

Transmit power: ρpilot = ρdata = 23dBm

User distance to BS: [0.5km, 1km]

Path loss: βn = −128.1− 36.7 log10(dn), ∀n
100kHz bandwidth, 10ms coherence time

T = 1000 symbols per coherence time
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User Activity Detection
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PFA(M): L=90

PMD(M): L=90
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PFA(M): L=110

PMD(M): L=110

Probabilities of missed detection and false alarm reduce as L increases

Probabilities of missed detection and false alarm go to zero as M increases
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Achievable Rate with Massive MIMO
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AMP with M=256: Numerical

AMP with M=256: Predicted with Exact τ
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2
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∞
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=σ

2
/ξ(1-K/L)

Known User Activity with M=256

The optimal L when user activity is unknown needs to be longer

There is a loss in sum-rate due to the need for longer pilot
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Multi-Cell Systems
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User Activity Detection in Multicell Systems

What is the impact of the inter-cell interference?

  

  

  

  

How to overcome the inter-cell interference?
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Activity Detection in Multicell Systems

Multi-cell system with B BSs each equipped with M antennas;

N single-antenna devices per cell, K of which are active;

Device n in cell b is assigned a length-L unique signature sequence sbn;

Received signal Y b ∈ CL×M at BS b is

Y b =
N∑

n=1

αbnsbnhT
bbn +

j=B∑
j=1,j 6=b

N∑
n=1

αjns jnhT
bjn + Z b

= SbX bb +

j=B∑
j=1,j 6=b

S jX bj + Z b, (47)

where

αbn ∈ {1, 0} activity indicator; Z b ∈ CL×M Gaussian noise with variance σ2.
hbjn ∈ CM×1 is the channel from user n in cell j to BS b
S j , [s j1, · · · , s jN ] ∈ CL×N ; X bj , [αj1hbj1, · · · , αjNhbjN ]T ∈ CN×M

The inter-cell interference brings performance degradation for activity detection.
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AMP Based Activity Detection for Multi-cell

With AMP, we consider two strategies to deal with the inter-cell interference

Massive 

MIMO

Central 

Unit

Massive MIMO: Each BS has a large-scale antenna array, and operates
independently, while treating the inter-cell interference as noise.

Cooperative MIMO: Each BS has a moderate number of antennas, and is
connected to a central unit (CU), where cooperative detection is performed.
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Activity Detection in Massive MIMO System

Each BS is equipped with a large-scale antenna array, i.e., M is large.

Each BS aims to detect the active devices within its own cell, and the
inter-cell interference is treated as noise:

Y b = SbX bb +
∑
j 6=b

S jX bj + Z b

, SbX bb + Z ′
b (48)

By approximating Z ′
b as a Gaussian noise, the resulting system model in

multicell case is similar to that in the single-cell case.

AMP can be used to detect the active devices in cell b by recovering the
non-zero rows of X bb based on Y b.
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Activity Detection in Cooperative MIMO System

Potential ways to perform the cooperative detection with BSs connected to CU:

Centralized detection: The received signals at the BSs Y b’s are forwarded
to the CU, where a large-scale AMP is used for activity detection.
Interference is completely avoided. However, need high-bandwidth BS-CU links.

Distributed detection: Each BS performs a preliminary activity detection,
and forwards the results to the CU, where an aggregation is performed.
Forwarding the detection LLRs can save bandwidth of the BS-CU links.

LLR 

Exchange
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Cooperative Activity Detection

Each BS detects the active devices in all B cells using the knowledge of all
signature sequences. This can be achieved by recovering the interference as

Y b = SbX bb +
∑
j 6=b

S jX bj + Z b

=
[

S1 · · · SB

]  X 1b

...
XBb

+ Z b

, SX b + Z b (49)

Preliminary detection: The BS detects the active devices by estimating the
non-zero row of X b from Y b using AMP. This is similar to the single-cell
case.

Quantization and forwarding: The detection results by AMP at each BS
are quantized and sent to the CU in the form of LLRs (e.g., 3-4 bits per LLR.)

Aggregation: CU aggregates the independent LLRs and declares activities.
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Comparison of Massive MIMO and Cooperative MIMO
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Figure: Cell-edge user performance in a network with 19 cells and 2000 devices per cell,
among which 100 devices are active. To achieve comparable performance as cooperative
MIMO, four times as many as antennas are required in the massive MIMO case.
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Summary

AMP is a practical sparse user activities detection algorithm:

State evolution provides accurate detector performance analysis.

Denoiser should be designed to match channel characteristics.

Detection becomes accurate with massive MIMO but convergence is slower.

Cooperation can improve the cell-edge performance.

Implications for network design:

The use of non-orthogonal pilots is inevitable.

Massive MIMO needs to be deployed for good detection performance.

Multi-cell cooperation can further help.

Channel estimation is the main bottleneck.
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Massive Random Access for Internet-of-Things (IoT)

Active Users

Inactive Users

Large number of devices with sporadic activity
Low latency random access scheme for massive users is required
Non-orthogonal signature sequences need to be used
User activity detection (user identification) performed at base station (BS)
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System Model

BS equipped with M antennas
N single-antenna devices, K of which are active at a time
Each device is associated with a length-L unique signature sequence sn

Channel hn of user n includes both (i.i.d.) Rayleigh and large-scale fading
For single-cell system, received signal Y ∈ CL×M at the BS is

Y =
N∑

n=1
αnsnhT

n + Z = SX + Z, (1)

where
αn ∈ {1, 0} activity indicator; Z ∈ CL×M Gaussian noise with variance σ2

S , [s1, . . . , sN ] ∈ CL×N ; X , [α1h1, · · · , αNhN ]T ∈ CN×M
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Joint Sparse Activity Detection and Channel Estimation

Aim to identify the K non-zero rows of X from Y = SX + Z.

S
ig

n
a
tu

re
 

= +

Channel of Active User

Noise 

NM

L ...

= +

M

L

N

N

N

M

M

L

M

Multiple measurement vector (MMV) problem in compressed sensing
Columns of X share the same sparsity pattern, i.e., row sparsity

Efficiently solved by the approximate message passing (AMP) algorithm
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Approximate Message Passing (AMP)

Derived from graphical model of Y = SX + Z [Donoho-Maleki-Montanari’09]

...

...

Suppose entries of S are i.i.d. random
Aim to compute the marginals of the joint distribution p(X,Y)
Approximate µy→x as Gaussian in the large system limit N, L→∞
Further simplify the messages such that only N + L messages are tracked

Wei Yu (University of Toronto) Covariance Based Detection 5 / 64



Intuitive Interpretation of AMP
Matched filtering −→ Denoising −→ Computing and correcting the residual

η(y ; θ) =


y − θ, y > θ

0, −θ ≤ y ≤ θ
y + θ, y < −θ

(2)

-4 -3 -2 -1 0 1 2 3 4
x

-3

-2

-1

0

1

2

3
2
(x

,1
)

Figure: Soft thresholding function with θ = 1
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AMP Algorithm for MIMO

The AMP algorithm expressed in matrix form:

Xt+1 = ηt(SHRt + Xt), (3)

Rt+1 = Y− SXt+1 + N
L Rt〈η′t(SHRt + Xt)〉, (4)

where
Xt+1, estimate at iteration t + 1;
Rt+1, residual at iteration t + 1;
ηt(·), a non-linear function known as denoiser that performs on each row
〈·〉, sample averaging operation

Works well if M is fixed, and L, N, K →∞.
Complexity: O(NLM) + complexity of ηt(·) per iteration

But what if M is large? AMP becomes increasingly difficult to converge.
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Joint Activity Detection and Large-Scale Fading Estimation
Key Assumption: We only need activity αn and do not need hn.

Reformulate sparse activity detection as a large-scale-fading estimation problem:

Y =
N∑

n=1
αnsnhT

n + Z , SΓ 1
2 H̃ + Z (5)

= +

M

L

N

N

N

M

M

L...
...

S , [s1, s2, · · · , sN ] ∈ CL×N , signature matrix
Γ , diag{α1β1, α2β2, · · · , αNβN} ∈ RN×N , where βn is large-scale fading
H̃ ,

[
h1/
√
β1,h2/

√
β2, · · · ,hN/

√
βN
]T ∈ CN×M , normalized channel matrix
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Statistics of the Received Signal

Let ym be the received signal at the m-th antenna, and let h̃m be the normalized
channel and zm be the noise. Then, ym can be expressed as

ym = SΓ 1
2 h̃m + zm (6)

= +

M

L

N

N

N

M

M

L...

.
..

m -th antenna

Model: Small-scale fading is i.i.d. Rayleigh across M received antennas.
Then, h̃m follows CN (0, I). Also, zm follows CN (0, σ2I).
Therefore, given Γ, ym is i.i.d. across m as CN (0,Σ) with Σ = SΓSH + σ2I.
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Maximum Likelihood Estimation of Γ
The sparse device activity is included in the diagonal matrix Γ, which can be
estimated using the maximum likelihood estimation (MLE) as:

min
Γ≥0

f (Γ) : = − 1
M log p(Y|Γ) ←− minimization of negative log-likelihood

= − 1
M

M∑
m=1

log p(ym|Γ) ←− i.i.d. over antennas

= − 1
M

M∑
m=1

log
(

1
|πΣ| exp

(
−yH

mΣ−1ym
))

←− Gaussian distribution

= − 1
M

M∑
m=1

log
(

1
|πΣ|

)
− 1

M

M∑
m=1

log
(
exp

(
−yH

mΣ−1ym
))

= log |Σ|+ 1
M

M∑
m=1

tr
(
Σ−1ymyH

m
)

+ const. ←− xHAx = tr
(
AxxH)

= log |Σ|+ tr
(

Σ−1 1
M

M∑
m=1

ymyH
m

)
+ const. (7)
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Sample Covariance as a Sufficient Statistic
Define the sample covariance matrix of the received signal as

Σ̂ ,
1
M

M∑
m=1

ymyH
m = 1

M YYH . (8)

With the sample covariance matrix, the MLE of Γ can be expressed as

min
Γ≥0

f (Γ) : = log |Σ|+ tr
(

Σ−1Σ̂
)

+ const.

= log |SΓSH + σ2I|+ tr
(

(SΓSH + σ2I)−1Σ̂
)

+ const. (9)

Σ̂ is computed by averaging over different antennas, not time slots
Σ̂ is a sufficient statistics since f (Γ) depends on Y only through Σ̂
The size of the MLE problem depends on N, L only, not M.

A. Fengler, S. Haghighatshoar, P. Jung, and G. Caire: “Non-Bayesian Activity Detection, Large-Scale Fading
Coefficient Estimation, and Unsourced Random Access with a Massive MIMO Receiver”, IEEE Trans. Inf.
Theory, May 2021. http://arxiv.org/abs/1910.11266
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Covariance Based Sparse Activity Detection
Instead of jointly estimating the channel, i.e., the non-zero rows in X based on Y:

= +

M

L

N

...

We now estimate large-scale fading Γ based on Σ̂ = 1
M YYH :

= +M

M

L

L

L

×

 
×

 

= +

N

... N

..
.

...

N

...

...

L

M

In the massive MIMO regime, i.e., if we let M →∞, this can be thought of
detecting a diagonal sparse matrix from the sample covariance.
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Covariance Based Sparse Activity Detection
Instead of jointly estimating the channel, i.e., the non-zero rows in X based on Y:

= +

M

L

N

...

We now estimate large-scale fading Γ based on Σ̂ = 1
M YYH :

= +M

M

L

L

L

×

 
×

 

= +

N

... N

..
.

...

N

...

...

L

M

Crucial Advantage: Instead of detecting KM variables based on LM observations,
we now detect K variables based on L2 observations!
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Covariance Based Sparse Activity Detection
To estimate Γ, need to solve the optimization problem

min
Γ≥0

f (Γ) : = − 1
M log p(Y|Γ)

= log |SΓSH + σ2I|+ tr
(

(SΓSH + σ2I)−1Σ̂
)

+ const. (10)

f (Γ) is non-convex (since it is concave function + convex function)
Expectation-maximization [Wipf-Rao ’07] (Sparse Bayesian Learning)
Coordinate descent [Haghighatshoar-Jung-Caire ’18]

Observe: In the large M limit, f (Γ) is minimized by the true value Γ0:

Σ̂ ,
1
M

M∑
m=1

ymyH
m → Σ0 , SΓ0SH + σ2I, as M →∞. (11)

Now consider the optimization (10) with Σ̂ = Σ0, optimizing over Σ as in:

min
Σ

log |Σ|+ tr(Σ−1Σ0). (12)

By taking derivative, we see Σopt = Σ0. For finite M, we need to solve (10).
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Coordinate Descent for Solving the MLE problem
Let γn be the n-th diagonal entry of Γ. The MLE can be expressed as

min
γ1,...,γN≥0

log
∣∣∣∣ N∑

n=1
γnsnsH

n + σ2I
∣∣∣∣+ tr

( N∑
n=1

γnsnsH
n + σ2I

)−1

Σ̂

 . (13)

Basic Idea: Update the coordinates γ1, . . . , γN alternatively
Coordinate update: Let γ̂n,∀n be the current estimates. Update γ̂k with
other γ̂n, n 6= k fixed at a time. Let γ̂k + d be the update. Determine d by

min
d≥−γ̂k

log
(

1 + dsH
k Σ̃−1sk

)
− dsH

k Σ̃−1Σ̂Σ̃−1sk

1 + dsH
k Σ̃−1sk

. (14)

Σ̃ =
∑N

n=1 γ̂nsnsH
n + σ2I is the current value of the covariance based on γ̂n.

The constraint d ≥ −γ̂k ensures the new γ̂k + d is always non-negative.
By taking the derivative of the objective in (14), a closed-form solution is

d = max

{
sH

k Σ̃−1Σ̂Σ̃−1sk − sH
k Σ̃−1sk

(sH
k Σ̃−1sk )2

,−γ̂k

}
. (15)

Advantages: Efficient due to closed-form solution; empirically performs well.
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Coordinate Descent for Device Activity Detection

We use two loops in the coordinate decent. The inner loop update all γ1, . . . , γN
in a random permuted order to ensure that each coordinate will be visited once.

Algorithm 1 Coordinate descent for device activity detection

1: Initialize γ̂ = 0, Σ̃ = σ2I, Σ̃−1 = σ−2I.
2: for i = 1, 2, . . . ,T do
3: Select a random permutation i1, i2, . . . , iN of indices {1, 2, . . . ,N}.
4: for n = 1 to N do
5: d = max

{
sH

in Σ̃−1Σ̂Σ̃−1sin−sH
in Σ̃−1sin

(sH
in Σ̃−1sin )2 ,−γ̂in

}
6: γ̂in = γ̂in + d ← Coordinate descent update
7: Σ̃−1 = Σ̃−1 − d Σ̃−1sin sH

in Σ̃−1

1+dsH
in Σ̃−1sin

← Rank-1 update of estimated covariance
8: end for
9: end for

10: Output γ̂ = [γ̂1, . . . , γ̂N ]T . Declare the activity with thresholding on γ̂.
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Covariance Matching Approach

Recall that the MLE aims to recover Γ by solving the following problem

min
Γ≥0

f (Γ) : = − 1
M log p(Y|Γ) = log |Σ|+ tr

(
Σ−1Σ̂

)
+ const. (16)

The objective can be seen as the distance between Σ̂ and Σ = SΓSH + σ2I
measured in the log-det Bregman matrix divergence.
The MLE aims to match the sample covariance Σ̂ to the true covariance Σ.

We can also use other distance metrics. With Frobenius norm as metric, we get

min
Γ≥0

‖SΓSH + σ2I− Σ̂‖2
F (17)

This method is also known as non-negative least square (NNLS).
The objective is convex. Coordinate descent can also be used to solve NNLS.
A scaling law on N, L, K , and M has been established under NNLS.
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MLE versus NNLS for Device Activity Detection
We compare the detection performance of MLE and NNLS via simulations.
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Figure: Performance comparison of MLE and NNLS. N = 2000, K = 100, and M = 64.
MLE outperforms NNLS. The performance gap becomes more substantial as L increases.
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Activity Detection with Known Large-Scale Fading

The covariance approach detects the device activity by estimating γn , αnβn.
There are scenarios in which the large-scale fading βn is known at the BS, only
the activities αn need to be estimated.

Maximizing the log-likelihood function of Y given α1, . . . , αN can be cast as

min
α1,...,αN

f (α1, . . . , αN) : = − 1
M log p(Y|α1, . . . , αN)

= − 1
M

M∑
m=1

log p(ym|α1, . . . , αN)

= − 1
M

M∑
m=1

log
(

1
|πΣ| exp

(
−yH

mΣ−1ym
))

= log |Σ|+ tr
(

Σ−1Σ̂
)

+ const. (18)

Note that p(ym|α1, . . . , αN) remains Gaussian with covariance Σ.
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Activity Detection with Known Large-Scale Fading

The problem of detecting the binary activity indicator αn is now:

min
{αn}

log
∣∣SΓSH + σ2I

∣∣+ tr
(

(SΓSH + σ2I)−1Σ̂
)

(19a)

s. t. αn ∈ {0, 1}, n = 1, 2, . . . ,N (19b)

Binary αn is challenging to deal with. We relax the constraint such that

αn ∈ [0, 1], n = 1, 2, . . . ,N (20)

The relaxed problem can be solved by coordinated descent with minor
modifications:

d = min
{

max
{

sH
k Σ̃−1Σ̂Σ̃−1sk − sH

k Σ̃−1sk

βk(sH
k Σ̃−1sk)2

,−α̂k

}
, 1− α̂k

}
. (21)

With unknown large-scale fading βn, we estimate γn = αnβn in [0,∞].
With known large-scale fading βn, we estimate αn in [0, 1].
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Recap of Problem Formulations

Sparse user activity detection with channel αnhn ∼ αn
√
βnCN (0, I):

Active Users

Inactive Users

If channel estimate is needed for subsequent data transmission:
We can use AMP, which gives a rough estimate of the instantaneous hn.

If only user activities (αn) are needed and large-scale fading is not known:
We can estimate large-scale fading (αnβn) using the covariance method.

If the users are not mobile and large-scale fading (βn) is known:
We can modify the covariance method to estimate αn.
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Comparison of AMP vs Covariance Approaches

Compressed Sensing (AMP) Covariance Based Estimation

Derived from Approx. marginals of p(X,Y) Maximization of p(Y|Γ)

Prior needed Sparsity level
for design of ηt(·)

None
(deterministic Γ)

Estimate Activities αn and
channels hn

Activities αn and
large-scale fading βn

Preferred regime Fix ε , K
N , δ , L

N , and M
Let N, L,K →∞

Fix N,K , L
Let M →∞

Complexity Roughly O(NLM)
per iteration

Roughly O(NL2) via CD
per iteration
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Remark on Complexity
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Figure: Numerical runtime for γ̂ to converge to an ε norm ball around γ for fixed K
N = 0.1

Each coordinate descent step requires O(L2) operations so updating all N
coordinates resulting in a complexity of O(L2N) per iteration.
The average number of iterations required to converge to solution increases
as the operating point approaches the phase transition boundary.
The complexity of each iteration grows as O(L2), but the complexity of the
overall algorithm decreases with L.
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Instability of AMP at High SNR

Total users N = 1000, active users K = 100, BS antennas M = 64, L = 110.
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Users are uniformly distributed between 0.8 and 1km from the BS.
User transmit power is 13dBm; Path-loss model 128.1 + 37.6 log(d [in km])
Error probability is the probability chosen such that N · PFA ≈ K · PMD
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Damping for AMP

Total users N = 1000, active users K = 100, BS antennas M = 64, L = 110.
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Consider a damping term in the AMP update, improving stability and
convergence, making AMP more effective with large M.

Xt+1 = (1− α)ηt
(
SHRt + Xt)+ αXt ,

where α ∈ [0, 1] is a damping factor (α = 0 for standard AMP).
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Numerical Comparison of AMP vs. Covariance Approach
Total users N = 1000, Active users K = 50, Number of antennas M = 8
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Figure: Performance and complexity of AMP vs covariance based estimation

All users are located in the cell-edge (1000m) with transmit power 23dBm.
Path-loss model 128.1 + 37.6 log(d [in km]).
Error probability is defined as the average of #(Incorrectly detected users)

K
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Numerical Comparison of AMP vs. Covariance Approach
Total users N = 1000, Active users K = 50, Signature length L = 100
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Figure: Performance and complexity of AMP vs covariance based estimation

All users are located at the cell-edge (1000m) with transmit power 23dBm.
Path-loss model 128.1 + 37.6 log(d [in km]).
Error probability is defined as the average of #(Incorrectly detected users)

K
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Numerical Comparison of AMP vs. Covariance Approach
Total users N = 1000, Active users K = 90, Signature length L = 100
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Figure: Performance and complexity of AMP vs covariance based estimation

All users are located at the cell-edge (1000m) with transmit power 23dBm.
Path-loss model 128.1 + 37.6 log(d [in km]).
Error probability is defined as the average of #(Incorrectly detected users)
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AMP vs Covariance Approach

Objectives:
Both algorithms perform sparse activity detection for massive random access.
AMP aims to recover the channels as well.

Performance:
AMP and covariance approach have similar performance if K � L and M small
Covariance approach is more effective in exploiting large M and when K ' L.

Complexity:
AMP is more computationally efficient when K � L and M small.

Crucial advantage of covariance method:
Being able to accommodate K � L (!)
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Scaling Law of the Covariance Approach

Suppose high SNR, perfect sampled covariance matrix Σ̂ (M →∞), we plot the
estimation error of Γ under different (K , L) with N = 2000
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Analysis
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Analysis of AMP via State Evolution

The performance of AMP at each iteration can be predicted in the asymptotic
regime where L→∞,N →∞ with fixed L

N
SHrt + xt can be modeled as signal plus noise, i.e., x + vt

vt is i.i.d. Gaussian noise with variance τt tracked by state evolution equation

τ 2
t+1 = σ2 + 1

δ
E|ηt(X + τtZ )− X |2 (22)

for the M = 1 case.

Interpretation of state evolution: Vector estimation y = Sx + z is reduced to
uncoupled scalar estimation (xt + SHrt)i = xi + v t

i
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Analysis of Covariance Approach via Fisher Info Matrix

Recall the MLE formulation, and let γ denote the diagonal entries of Γ

min
γ≥0

f (γ) : = − 1
M log p(Y|γ) = − 1

M

M∑
m=1

log p(ym|γ)

= log |SΓSH + σ2I|+ tr
(

(SΓSH + σ2I)−1Σ̂
)

+ const. (23)

Analyzing the solution to (23) under coordinate descent is hard.
Instead, let’s analyze the true optimum of (23), i.e., MLE solution γ̂ML.
Investigate asymptotic property of γ̂ML in the massive MIMO regime.
The Fisher information matrix, denoted by J(γ), plays a critical role in the
asymptotic analysis. The (i , j)-th entry of J(γ) is defined as

[J(γ)]ij = E
[
∂ log p(Y|γ)

∂γi

∂ log p(Y|γ)
∂γj

]
. (24)

Key assumption for the analysis: M →∞.
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Fisher Information Matrix
The Fisher Information matrix can be also written as the negative expected
second derivative of the log-likelihood function

[J(γ)]ij = E
[
∂ log p(Y|γ)

∂γi

∂ log p(Y|γ)
∂γj

]
= −E

[
∂2 log p(Y|γ)

∂γi∂γj

]
(25)

Intuitive interpretation: Fisher information matrix measures how
informative the likelihood function is, and how effective the MLE can be
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Cramer-Rao Bound and Asymptotic Property of MLE

Fisher information matrix plays a critical role in classic estimation theory.
Cramer-Rao bound: Let γ be a parameter, and let γ̂ be an unbiased
estimator of γ. Then the covariance of estimation error is lower bounded by

E
[
(γ̂ − γ)(γ̂ − γ)T ] ≥ J−1(γ) (26)

Asymptotic properties of the MLE: Let γ̂ML be the maximum likelihood
estimator of γ. Then, under certain regularity conditions, as M →∞

Consistency: γ̂ML P→ γ (27)

Asymptotic normality:
√

M(γ̂ML − γ) D→ N (0,MJ−1(γ)) (28)

It means that the maximum likelihood estimator γ̂ML is asymptotically unbiased
and asymptotically attains the Cramer-Rao bound, i.e., asymptotically efficient.
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Regularity Conditions

The regularity conditions for consistency and asymptotic normality include
The true parameter γ0 is identifiable, i.e.„ there exists no other γ′ 6= γ0 with

p(Y|γ0) = p(Y|γ′). (29)

The true parameter should be in the interior of the feasible region, as
otherwise γ̂ML − γ0 cannot be Gaussian distributed.

These conditions are usually reasonable and mild.
But, these conditions are NOT always satisfied for sparse activity detection.

The identifiability may not be guaranteed when

N � L2, (30)

i.e., when the dimension of γ0 is larger than the dimensions of the sample
covariance Σ̂, there are too many parameters to estimate.
The true parameter γ0 in fact always lies on the boundary of its parameter
space [0,∞)N , because most of the entries of γ0 are zero.

Need new analysis!
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Fisher Information Matrix in Sparse Activity Detection

We first derive the Fisher information matrix for the activity detection problem:

[J(γ)]ij = −E
[
∂2 log p(Y|γ)

∂γi∂γj

]
. (31)

p(ym|γ) is Gaussian, the second derivative of log p(Y|γ) =
∑

m log p(ym|γ) is

∂2 log p(Y|γ)
∂γi∂γj

= M tr(Σ−1sjsH
j Σ−1si sH

i )−M tr(Σ−1sjsH
j Σ−1si sH

i Σ−1Σ̂)

−M tr(Σ−1si sH
i Σ−1sjsH

j Σ−1Σ̂). (32)

Taking the expectation of Σ̂ using the fact that E[Σ̂] = Σ gives

−E
[
∂2 log p(Y|γ)

∂γi∂γj

]
= M(sH

i Σ−1sj)(sH
j Σ−1si ). (33)
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Fisher Information Matrix in Sparse Activity Detection

The Fisher information matrix J(γ) can be further written in a matrix form as

J(γ) = M (P� P∗) , (34)

where P , SH (SΓSH + σ2I
)−1 S; � element-wise product; (·)∗ conjugate

J(γ) is a real symmetric matrix of dimensions N × N, whose rank satisfies:

Rank(P� P∗)
(a)
≤ Rank(P)2

(b)
≤ L2, (35)

where
(a) is due to Rank(U� V) ≤ Rank(U) Rank(V);
(b) is due to Rank(P) ≤ Rank(S) ≤ min{N, L}.

Thus J(γ) is rank-deficient if N > L2 since P� P∗ is of size N × N.

Our new analysis takes rank-deficiency of J(γ) into consideration
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Performance Analysis of Activity Detection

Since the regularity conditions may not hold in the sparse activity detection
problem, we need to ask:

What are the conditions on the system parameters such that γ̂ML can
approach the true parameter γ0 as M →∞?
This helps identify the desired operating regime of the system parameters for
getting an accurate estimate γ̂ML via MLE with massive MIMO

If M is finite, how is the estimation error γ̂ − γ0 distributed?
This helps characterize the error probabilities in device activity detection.

We answer these questions by examining the “null space” of
the Fisher information matrix.
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Necessary and Sufficient Condition for γ̂ML → γ0

Theorem
Let I be an index set corresponding to zero entries of γ0, i.e., I , {i | γ0

i = 0}.
We define two sets N , C in the space RN , respectively, as follows

N , {x | xT J(γ0)x = 0, x ∈ RN}, (36)
C , {x | xi ≥ 0, i ∈ I, x ∈ RN}, (37)

where xi is the i-th entry of x. Then a necessary and sufficient condition for the
consistency of γ̂ML, i.e., γ̂ML → γ0 as M →∞, is N ∩ C = {0}.

N is the “null space” of J(γ0); C is a cone with non-negative entries indexed by I.

This condition leads to a phase analysis for the covariance based method, i.e., set
of (N, L,K ) outside of which γ̂ML cannot approach γ0 even in the large M limit.
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Interpretation of the Condition
N corresponds to all directions in RN along which likelihood stays constant.
In these directions, the true parameter cannot be identified via the likelihood.
C is the directions along which parameters remain within constraint RN

+

N ∩ C = {0} ensures that the true parameter γ0 is uniquely identifiable via
the likelihood in its feasible neighborhood, also termed as local identifiability

Local identifiability is clearly necessary.
Sufficiency due to equivalence of local and global identifiability in this case.
A necessary condition for N ∩ C = {0} is that dim(N ) < |I|.
Since dim(N ) is roughly N − L2 and |I| = N − K , we have K < L2.

Wei Yu (University of Toronto) Covariance Based Detection 41 / 64



Numerically Verify the Condition via M+ Criterion

Proposition

Let I , {i | γ0
i = 0} and Ic , {i | γ0

i > 0} be two index sets with |I| = N − K
and |Ic | = K.We define three submatrices of J(γ0) ∈ RN×N as follows.

A ∈ R(N−K)×(N−K), row indices and column indices from I
B ∈ R(N−K)×K , row indices from I and column indices from Ic

C ∈ RK×K , row indices and column indices from Ic

If C is invertible, then the condition N ∩C = {0} is equivalent to the feasibility of

find x (38a)
subject to (A− BC−1BT )x > 0, (38b)

where vector x ∈ RN−K .

Note that matrix M satisfying MT x > 0 for some x, i.e., row span intersecting the
positive orthant, is referred to as M+ [Bruckstein-Elad-Zibulevsky’08].
Proof based on analyzing the null space of J(γ0) and that ∀M: (i) Mx = 0 has
no solution for x ≥ 0 and x 6= 0, is equivalent to (ii) MT x > 0 has solutions.

Wei Yu (University of Toronto) Covariance Based Detection 42 / 64



Covariance Matching Perspective

Analyzing the optimization problem:

min
γ�0

f (γ) = log |SΓSH + σ2I|+ tr
(

(SΓSH + σ2I)−1Σ̂
)

(39)

By taking the derivative, we see that ideally we need: SΓSH + σ2I = Σ̂
For finite M, usually SΓSH + σ2I 6= Σ̂ since Σ̂ is the sample covariance
For M →∞, SΓSH + σ2I = Σ̂ holds at true γ0, i.e., γ0 minimizes f (γ).

Intuition
γ̂ML → γ0 as M →∞ ⇐⇒ γ0 uniquely minimizes f (γ) in the limit M →∞

⇐⇒ γ0 is the unique solution to SΓSH + σ2I = Σ̂ in
the limit M →∞.

A necessary and sufficient condition for the consistency of γ̂ML can be derived by
studying the uniqueness of SΓSH + σ2I = Σ̂ in the limit M →∞.
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Equivalent Necessary and Sufficient Condition

Proposition

Let Ŝ ∈ CL2×N be the column-wise Kronecker product (Khatri-Rao product) of S∗
and S, i.e., Ŝ , [s∗1 ⊗ s1, . . . , s∗N ⊗ sN ]. We define a set Ñ in the space RN as

Ñ , {x | Ŝx = 0, x ∈ RN}. (40)

Then a necessary and sufficient condition for γ0 being the unique solution to
SΓSH + σ2I = Σ̂ in the limit M →∞, is Ñ ∩ C = {0}, where C is as in (37).

The proof is obtained by vectorizing SΓSH + σ2I = Σ̂ in the limit M →∞, and
studying the resulting linear equation.

Proposition

We have that Ñ defined in (40) and N defined in (36) are identical. Thus, the
condition Ñ ∩ C = {0} is equivalent to N ∩ C = {0}

Key advantage of using Ñ is that it depends only on S and is independent of SNR.
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Alternative Way to Numerically Verify the Condition

Theorem
Let rT

i = [si1, si2, . . . , siN ] be the i-th row of S. Based on rT
i , we construct two

sets of row vectors to represent the real and imaginary parts of rows of Ŝ:{
Re(rT

i )� Re(rT
j ) + Im(rT

i )� Im(rT
j ), 1 ≤ i ≤ j ≤ L

}
, (41){

Re(rT
i )� Im(rT

j )− Im(rT
i )� Re(rT

j ), 1 ≤ i < j ≤ L
}
. (42)

Let D ∈ RL2×N be the matrix formed by all L2 rows from these two sets. The
condition Ñ ∩ C = {0} is equivalent to the infeasibility of the following problem

find x (43a)
subject to Dx = 0, (43b)

‖x‖1 = 1, (43c)
xi ≥ 0, i ∈ I, (43d)

where x ∈ RN and the constraint (43c) guarantees x 6= 0.
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Scaling Law for NNLS Formulation

Theorem (Fengler-Haghighatshoar-Jung-Caire ’19)

Let S ∈ CL×N be the signature sequence matrix whose columns are uniformly
drawn from the sphere of radius

√
L in an i.i.d. fashion. There exist some

constants c1, c2, c3, and c4 whose values do not depend on K, L, and N such that
if K ≤ c1L2/ log2(eN/L2), then with probability at least 1− exp(−c2L), the
solution of the NNLS problem, γ̂NNLS, satisfies

‖γ0 − γ̂NNLS‖2 ≤ c3

(√
L
K + c4

)
‖SΓ0SH + σ2I− Σ̂‖F

L . (44)

The derivation is based on restricted isometry property in compressed sensing.
It implies that the error vanishes as M →∞, because Σ̂→ SΓ0SH + σ2I.
The result is for specific sequence S.
Since K < L2, we get a simpler form of scaling law: L2 ≈ K log2(N/K ).
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Scaling Law for MLE Formulation
Scaling laws in compressed sensing:

For Ax = b with A satisfying restricted isometry property, the number of
measurements needed to recover a K -sparse vector x of length-N is

L = O(K log(N/K)).

For Σ̂ = SΓSH + σ2I with Ŝ satisfying robust null space property, the number
of measurements needed to receover a K -sparse diagonal matrix Γ of size N2 is

L2 = O(K log2(N/K)).

Based on the same robust NSP of Ŝ, we can derive the scaling law of MLE:

= +
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M

L

L

L

×

 
×

 

= +

N

...

N..
.
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N
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Theorem
Under the same scaling law for K, L, N and for the same randomly chosen S,
Ñ ∩ C = {0} holds with probability at least 1− exp(−c2L).
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Numerical Results – Scaling Law of Covariance Approach
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Figure: Phase transition in the space of N, L,K . All users are located at the cell-edge
(1000m) with transmit power 23dBm. Path-loss is 128.1 + 37.6 log(d [km]). Generated
by 100 Monte Carlo simulations. Error bars indicate the range below which all 100
realizations satisfy the condition and above which none satisfies the condition.
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Phase Transition of the Covariance Approach
Suppose high SNR, perfect sampled covariance matrix Σ̂ (M →∞), we plot the
estimation error of Γ under different (K/N, L2/N) with N = 2000

Performance of coordinate descent algorithm is very close to the optimal MLE!
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Value of Knowing Large-Scale Fading

The covariance method directly estimates the activity indicator αn in [0, 1] instead
of γn = αnβn in [0,∞). Let α , [α1, . . . , αN ]T and let the true value of α be α0.

Theorem
Let I be an index set corresponding to zero entries of α0, i.e., I , {i | α0

i = 0}.
We define two sets N , C in the space RN , respectively, as follows

N , {x | xT J(γ0)x = 0, x ∈ RN}, (45)
C , {x | xi ≥ 0, i ∈ I, xi ≤ 0, i /∈ I, x ∈ RN}, (46)

where xi is the i-th entry of x. Then a necessary and sufficient condition for the
consistency of α̂ML, i.e., α̂ML → α0 as M →∞, is N ∩ C = {0}.

The extra constraint in defining C is due to the fact that αn is upper bounded.
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Value of Knowing Large-Scale Fading
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Figure: Phase transition comparison of the cases with and without knowing large-scale
fading. N = 1000. With known large-scale fading, αn is both lower and upper bounded.

When K
N ≈ 1, then inactive users are sparse!
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Asymptotic Distribution of the ML Estimation Error

For MLE solutions not on boundary, we have
√

M(γ̂ML − γ) D→ N (0,MJ−1(γ)).
For MLE with boundary constraint: C , {x | xi ≥ 0, i ∈ I, x ∈ RN}:

Theorem
Let x ∈ RN×1 ∼ N

(
0,MJ†(γ0)

)
, where † denotes Moore-Penrose inverse. Let

µ ∈ RN×1 be a solution to the constrained quadratic programming problem

minimize
µ

1
M (x− µ)T J(γ0)(x− µ) (47a)

subject to µ ∈ C, (47b)

where C is defined in (37). For the case without knowing large-scale fading,
assume that γ̂ML → γ0, then there exists a sequence of µ such that
M 1

2 (γ̂ML − γ) has asymptotically the same distribution as µ as M →∞.

Note that µ is random due to the randomness of x.
Detection error can be characterized based on the distribution of γ̂ML − γ0.
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Distribution of Estimation Error
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Figure: Probability density functions (PDFs) of the error γ̂ML
i − γ0

i (normalized). The
parameters are N = 1000, K = 50, and L = 20 (L2/N = 0.4,K/N = 0.05). Note that
there is a point mass in the distribution of the error for the zero entries. This is the
probability that the inactive devices are correctly identified at finite M = 256.
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Detection Error Probabilities
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Figure: Probability of missed detection vs. probability of false alarm. The parameters are
N = 1000, K = 50, and L = 20 (L2/N = 0.4,K/N = 0.05). All users are located at the
cell-edge (1000m) with transmit power 23dBm. Path-loss is 128.1 + 37.6 log(d [km]).

Wei Yu (University of Toronto) Covariance Based Detection 54 / 64



User Activity Detection in Multicell Systems

What is the impact of the inter-cell interference?

  

  

  

  

How to overcome the inter-cell interference?

Wei Yu (University of Toronto) Covariance Based Detection 55 / 64



Activity Detection in Multicell Systems

Multi-cell system with B BSs each equipped with M antennas;
N single-antenna devices per cell, K of which are active;
Device n in cell b is assigned a length-L unique signature sequence sbn;
Received signal Yb ∈ CL×M at BS b is

Yb =
N∑

n=1
αbnsbnhT

bbn +
j=B∑

j=1,j 6=b

N∑
n=1

αjnsjnhT
bjn + Zb

= SbXbb +
j=B∑

j=1,j 6=b
SjXbj + Zb, (48)

where
αbn ∈ {1, 0} activity indicator; Zb ∈ CL×M Gaussian noise with variance σ2.
hbjn ∈ CM×1 is the channel from user n in cell j to BS b
Sj , [sj1, · · · , sjN ] ∈ CL×N ; Xbj , [αj1hbj1, · · · , αjNhbjN ]T ∈ CN×M

The inter-cell interference brings performance degradation for activity detection.
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Covariance Based Activity Detection for Multi-cell
To use the covariance approach, the signal at BS b is re-written as

Yb =
N∑

n=1
αbnsbnhT

bbn +
j=B∑

j=1,j 6=b

N∑
n=1

αjnsjnhT
bjn + Zb

= SbAbG
1
2
bbH̃bb +

j=B∑
j=1,j 6=b

SjAjG
1
2
bjH̃bj + Zb

= SbΓ
1
2
bbH̃bb +

j=B∑
j=1,j 6=b

SjΓ
1
2
bjH̃bj + Zb (49)

Sj , [sj1, sj2, · · · , sjN ] ∈ CL×N ; Aj , diag{αj1, αj2, · · · , αjN} ∈ {0, 1}N×N

Gbj , diag{βbj1, βbj2, · · · , βbjN} ∈ RN×N large-scale fading matrix
Γbj , diag{αj1βbj1, αj2βbj2, · · · , αjNβbjN} ∈ RN×N

H̃bj ,
[
hbj1/

√
βbj1, · · · ,hbjN/

√
βbjN

]T ∈ CN×M , normalized channel

Similar to single-cell case, all Γbj are treated as deterministic unknown parameters
and all H̃bj are treated as random samples.
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Cooperative Activity Detection via Covariance Approach

Assume that each BS is equipped with a large-scale antenna array.

Cooperative detection: To alleviate the impact of inter-cell interference, we
further consider BS cooperation by assuming all BSs are connected to a CU.

Depending on whether the large-scale fading matrices Gbj ,∀b, j are known,
the device activity detection problem can be formulated differently.

When Gbj are not known, we need to estimate Γbj = AjGbj , ∀b, j , which has

B2N unknown parameters

When Gbj are known, we only need to estimate Ab,∀b, which contains
BN unknown parameters

Device activity detection is much easier if large-scale fading is known!
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Cooperative Detection with Unknown Large-scale Fading

We aim to estimate Γbj = AjGbj ,∀b, j from the received signals Yb,∀b.
The likelihood function of Yb’s given Γbj ’s can be expressed as

p(Y1, . . . ,YB |Γ11,Γ12, . . . ,ΓBB) =
B∏

b=1
p(Yb|Γ11,Γ12, . . . ,ΓBB)

=
B∏

b=1

1
|πΣb|M

exp
(
− tr

(
MΣ−1

b Σ̂b

))
. (50)

The MLE problem can be cast as minimization of negative log-likelihood:

min
{Γbj}

B∑
b=1

(
log |Σb|+ tr

(
Σ−1

b Σ̂b

))
(51a)

s. t. γbjn ∈ [0,∞),∀b, j , n (51b)

The problem can be solved using coordinate descent.
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Cooperative Detection with Known Large-scale Fading
Assuming that all large-scale fading matrices Gbj ’s, we directly estimate the device
activity Ab’s using the MLE. The likelihood function of Yb’s can be expressed as

p(Y1, . . . ,YB |A1, . . . ,AB) =
B∏

b=1
p(Yb|A1, . . . ,AB)

=
B∏

b=1

1
|πΣb|M

exp
(
− tr

(
MΣ−1

b Σ̂b

))
. (52)

Since the activity αbn is binary, the maximization of likelihood can be cast as

min
{Ab}

B∑
b=1

(
log |Σb|+ tr

(
Σ−1

b Σ̂b

))
(53a)

s. t. αbn ∈ {0, 1},∀b, n (53b)

Known large-scale fading: Single-cell and multicell have same phase transition
Multicell problem: Find a BN-dim sparse vector in (BN −BL2)-dim subspace.
Single-cell problem: Find a N-dim sparse vector in (N − L2)-dim subspace.
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Performance of Covariance Based Detection for Multi-cell
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Figure: Performance comparison of the multicell covariance approach with and without
knowing large-scale fading. B = 7, N = 200, K = 20, and L = 20. We observe that
knowing the large-scale fading brings substantial improvement.
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Figure: Performance comparison of the multicell covariance approach with single-cell
system, with knowing large-scale fading. B = 7, N = 200, K = 20.
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Conclusions

Device activity detection for massive random access in machine-type and IoT
communications is a sparse recovery problem.

Two detection algorithms for user activity detection:
Signal-based AMP for estimating the user activity and the exact channel.
Covariance-based MLE for estimating the user activity only.

Analyses for AMP and the covariance approach:
State evolution for AMP: Low complexity, works best for small M.
Fisher information matrix for covariance approach: Suited for massive MIMO.

Advantage of covariance-based approach is that it can handle K = O(L2), as
compared to AMP which can only handle K = O(L).
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Further Information

Zhilin Chen, Foad Sohrabi, Ya-Feng Liu, Wei Yu,
“Phase Transition Analysis for Covariance Based Massive Random Access with
Massive MIMO”,
[Online] available: https://arxiv.org/abs/2003.04175, March 2020.

Zhilin Chen, Foad Sohrabi, and Wei Yu,
“Sparse Activity Detection in Multi-Cell Massive MIMO Exploiting Channel
Large-Scale Fading”,
To appear in IEEE Transactions on Signal Processing, 2021.
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Massive Connectivity

Massive connectivity is a crucial requirement for Internet-of-Things (IoT)
Requires up to 105 ∼ 106 devices connected per base station (BS).

Sporadic traffic, making device identification & scheduling challenging.
Assigning each user an orthogonal resource requires coordination.

Activity Detection is a first step toward coordination.
Equally importantly, we need to schedule users to transmission slots.

What is the cost of coordinated scheduling?
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Contention-Based vs Coordinated Scheduling

Uncoordinated Random Access:
Classic Slotted ALOHA: Contention-based uncoordinated scheduling.
Coded ALOHA can alleviate some of the inefficiencies of classic ALOHA.

Coordinated Random Access:
Coordinated scheduling requires feedback from the BS to the users.
What is the minimum feedback rate for scheduling?

Massive Random Access with Massive MIMO:
Coded Pilot Access vs. Scheduled Random Access
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Classic Solution: Slotted ALOHA

Slotted ALOHA involves contention and is uncoordinated
involving no communication between BS and users.

Slots  Slot 1  Slot 2  Slot 3  Slot 4 Slot 5

Device 1  tx

Device 2 collision tx

Device 3 collision tx

Device 4  tx

Users become active and transmit at random with probability p.
Transmission is successful only if a single user transmits in a slot.
If there is a collision, users must re-transmit their payload.
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Slotted ALOHA: Analysis
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Let X be the number of users that transmit in a slot.
Since X is sum of independent Bernoulli trials, it follows Poisson distribution

Pr(X = k) = λke−λk

k! , where E[X] = λ. (1)

Successful transmission only when k = 1, with probability λe−λ.
Optimize over λ. Throughput is maximized when λ = 1 with P(success) = 1

e .
Slots with collision or slots with no transmission (i.e., 63% slots) are wasted.
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Coded Slotted ALOHA

Coded Slotted ALOHA: Use packet-level erasure codes and successive
interference cancellation (SIC) to extract information from collisions.
Each user chooses an (nh, k) erasure code Ch to encode their k segments.
Code is chosen from a finite set {Ch}θh=1 according to some p.m.f., and the
nh packets are transmitted randomly over a fixed frame.

E. Paolini, G. Liva, and M. Chiani, “Coded Slotted ALOHA: A Graph-Based Method for
Uncoordinated Multiple Access,” IEEE Trans. Inf. Theory, vol. 61, no. 12, pp. 6815–6832, 2015.
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Coded Slotted ALOHA: Graph Representation

s3
User 1

User 2

User 3

Slot 1 Slot 2 Slot 3 Slot 4

s4s1 s2

u1 u2 u3

Figure: Bipartite graph model for contention resolution

Users are represented by variable nodes, slots by check nodes.
A user node ui is connected to slot node sj if user i transmits in slot j.
Decoding process is identical to the peeling decoder for erasure channel.
If users select repetition codes, this is known as Contention Resolution
Diversity Slotted ALOHA (CRDSA).
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Coded Slotted ALOHA: Decoding Example

s3 s4s1 s2

u1 u2 u3

s3 s4s1 s2

u1 u2 u3

s3 s4s1 s2

u1 u2 u3

Figure: Peeling decoding for CRDSA on a bipartite graph.

Decoding procedure for CRDSA is similar to Fountain code or LT code.
This connection allows us to show that the optimal user-node degree
distribution is the soliton distribution [Narayanan-Pfister’12].
With this degree distribution, the throughput , # of decoded users

# of slots → 1
asymptotically as the number of users and slots go to infinity.
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Contention vs. Scheduling

Slots  Slot 1  Slot 2  Slot 3  Slot 4 Slot 5

Device 1  tx

Device 2 collision tx

Device 3 collision tx

Device 4  tx

Slotted ALOHA based schemes all involve contention and collision resolution
Multiple transmissions increases power consumption.
Collision resolution increases delay.
Practical schemes cannot operate at optimal throughput.

Scheduling is an alternative approach to contention.
Contention-based schemes are often justified based on the assumption that
the cost of coordination is too great.

What is the cost of scheduling?
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Feedback-Based Scheduling for Random Access

Each of n potential users is assigned a unique non-orthogonal pilot.

...

Phase 1 (Activity Detection):
The k active users (k � n) send their
pilots synchronuously to the BS.

...

Phase 2 (Downlink Feedback): BS sends a
common feedback message to schedule the
data transmissions of k active users.

Wei Yu (University of Toronto) Contention versus Scheduling 10 / 40



Feedback-Based Scheduling for Random Access

...
k Active Devices

Slots  Slot 1  Slot 2  Slot 3  Slot 4 Slot k

Device 1  tx

Device 2 tx

Device 3  tx

Device 4  tx

Device k  tx

Phase 3 (Uplink Payload Transmission): The k active users transmit their payload in the
k slots based on the schedule provided by the BS, while avoiding collision.

What is the minimum feedback needed to ensure collision-free scheduling?
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Straightforward Feedback Scheme

A naive scheme to schedule k out of n users:
Assign a unique index to each of the n users;
The BS detects the k active users based on the pilots;
The BS lists the k users in the order in which they should transmit;
Each active user finds its index in the list, waits for its turn to transmit.

The feedback overhead of this scheme is k log (n) bits.
When n = 106, the cost of identification is log(n) = 20 bits per user.

Can we do better?
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Why Can We Do Better?

The naive k log (n) feedback scheme is not optimal.

There is flexibility in the order that users are scheduled.
Example: Users 1, . . . , k are to be scheduled. The BS can schedule according
to any of the k! permutations of these users, e.g. {1, . . . , k} or {k, . . . , 1}.
We can remove this extraneous cost via enumerative source coding.
This still requires log

(
n
k

)
bits feedback, which scales as O(log(n)) for fixed k.

Each user only needs to know its own slot, and NOT the other users’ slots.
Removing this extraneous information is the key to further reducing feedback.

G. K. Facenda and D. Silva, “Efficient Scheduling for the Massive Random Access Gaussian
Channel,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7598–7609, Aug. 2020.
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Identification Capacity

Identification via channels [Ahlswede-Dueck, 1992] says that identifying
one out of n users only requires O(log log(n)) bits! — This eliminates the
extraneous information as users no longer know which other users are active.

Identification codes lead to a feedback rate of O (k log log(n)).

1
2 4

5

A careful construction can beat even this scheme!
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Two-User Case

Consider the case of two active users (k = 2), out of a total of n users:

Any two distinct binary vectors differ in at least one index:

0 1 1 0 0 0 1 0 1 0 1 0 1 . . . .
0 1 0 0 0 0 1 0 1 0 1 0 1 . . . .Index X:

Index Y:

User X User Y

Slot 0 Slot 1

BS simply transmits the location in which the user indices differ.

The user with 0 transmits first, and the user with 1 transmits second.

This requires only R = dlog dlog (n)ee feedback with a fixed-length encoding.

Optimal for k = 2!
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Feedback Scheduling Code for Arbitrary (n, k)

Notation: [n] = {1, · · · , n}.
([n]
k

)
, set of all k-element subsets of [n].

The BS encodes the “activity pattern” into an index t

f :
(

[n]
k

)
→ {1, 2, . . . , T} , [T ].

Each user “decodes” its scheduled slot using

gi : [T ]→ [k] , i ∈ [n] .

(We consider k slots here, but having more slots can decrease feedback.)
In order for no collisions between active users, we must have:

∀A ∈
(

[n]
k

)
, ∃t ∈ [T ] s.t. ∀i 6= j ∈ A gi(t) 6= gj(t).
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Scheduling via Set-Partitioning

Define a k-partition of a set [n] to be a tuple of subsets X̄ = (X1, . . . ,Xk)

such that Xi

⋂
Xj = ∅, ∀i, j, and

k⋃
i=1

Xi = [n].

Define the set of activity patterns that can be covered by X̄ as

C
(
X̄
)

= {{x1, . . . , xk} | xi ∈ Xi, i = 1, . . . , k} .

i.e., there is exactly one active user in each distinct subset of the partition X̄.

Example: For the set [4], if X̄ = ({1, 2} , {3, 4}), then

C
(
X̄
)

= {{1, 3} , {1, 4} , {2, 3} , {2, 4}} .
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Set-Partition Encoding

To cover all activity patterns, we construct T partitions X̄(1), . . . , X̄(T ) s.t.
T⋃

t=1

C
(
X̄(t)) =

(
[n]
k

)
.

For activity pattern A, the following encoder/decoders ensure no collision:

f(A) = t s.t. A ∈ C
(
X̄(t)

)
;

gi (t) = j if i ∈ X(t)
j .
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Tetra Code: An Example for (n, k) = (9, 3)

1 2  3  4  5  6  7  8  9

1 2  3  4  5  6  7  8  9

1 2  3  4  5  6  7  8  9

1 2  3  4  5  6  7  8  9

Figure: The tetra code can be used to define 4 partitions.

Example: For the activity pattern A = {1, 5, 6}, the t = 3 partition has all
three active users in separate subsets, thus f (A) = 3 ensures no collision.
Only 2 bits of feedback as required! Optimal [Körner and Marton, 1988].
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Set-Partition Encoding

Any set of collision-free encoding and decoding function can be described
with the set-partition framework.
Given the decoding functions g′i : [T ]→ [k], we can define T partitions
X̄(t) =

(
X(t)

1 , . . . ,X(t)
k

)
, t ∈ [T ], where

X(t)
j = {i | g′i (t) = j, i ∈ [n]} .

For a fixed-length feedback code, we define the feedback rate as

R∗f (n, k) , log(T ∗)

where T ∗ is the minimum number of partitions needed to cover all activity
patterns.

Finding the minimum-rate zero-collision feedback code
now reduces to finding T ∗.
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Perfect Hashing Families

Finding T ∗ is equivalent to the perfect hashing families problem.

An (n, b, k)-family of perfect hash functions is a
family of functions from [n]→ [b] for n ≥ b ≥ k
such that for every A ⊂ [n], |A| = k, there exists a
function in the family that is injective on A.

hash
functionkeys

User 1

User 2

User 3

User 4

hashes

1

2

3

4

5

We can view our decoding functions as a (n, k, k)-family perfect hash
functions from [n]→ [k] if we swap the argument and the subscript.

Theorem (Fredman and Komlós, 1984, Körner and Marton, 1988)
The minimum size T ∗ of an (n, b, k) perfect hash family is bounded as:

logn
min1≤s≤k−1

bs

bs log b−s+1
k−s

. T ∗ .
(k − 1) logn

log 1
1− b

k

bk

.

The proof uses a notion of hypergraph entropy, but we can derive simpler,
but still instructive bounds. Here, bk , b!

(b−k)! is the falling factorial.
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Random Partition Construction

Take T random partitions X̄(1), . . . , X̄(T ), then the
probability an activity pattern A is not covered is

Pr
(

A /∈
T⋃
t=1

C
(
X̄(t)

))
=
(

1− k!
kk

)T
.

By the union bound we have:

Pr
(

T⋃
t=1

C
(
X̄(t)

)
6=
(

[n]
k

))
≤
(
n

k

)(
1− k!

kk

)T
.

If the RHS of the above falls below 1, it means that there exists a family of
partitions that cover all activity patterns.
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Achievability Bound on Minimum Feedback Rate

Using the fact 1− x < e−x, we can show that the RHS falls below 1 for:

T ≥
(

ln
(
n

k

))(
kk

k!

)
.

Proposition
The minimum rate for a fixed-length collision-free feedback code must be upper
bounded as:

R∗f (n, k) , log (T ∗) ≤ k log(e) + log
(

ln
(n
k

)
+ 1
)

+ 1
2 log

(
k

2π

)
.

Key observation: R∗f (n, k) ≤ O(log log(n)), plus a linear term in k log(e).
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Converse: Volume Bound

Since each partition can cover at most only a small
fraction of the activity patterns, we can also place a
volume bound on the covering:

T ∗ ≥
(
n
k

)⌈
n
k

⌉n mod k ⌊n
k

⌋k−n mod k .

Proposition
The minimum rate for a fixed-length collision-free feedback code must be lower
bounded as:

R∗f (k, n) ≥ k log (e)− log
(

nk

n(n− 1)...(n− k + 1)

)
− 1

2 log (2πk)− log (e)
12k .

Thus, R∗f (n, k) ≥ O(k).
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Converse: Exclusion Bound

A partition X̄(1) cannot have covered any activity pattern which has all its
elements drawn from S1 = [n]−X(1)

j , as

C
(
X̄(1)

)
∩
(

[n]−X(1)
j

k

)
= ∅, j = 1, . . . , k.

i.e., activity patterns with indices exclusively drawn from S1 are excluded.

Since one of the partitions X(i)
j is at most size

⌊
n
k

⌋
, we have:

|S1| = m1(n, k) ≥ n
(

1− 1
k

)
.
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Exclusion Bound

By repeated application of the exclusion argument:

mt(n, k) ≥ n
(

1− 1
k

)t
.

For this exclusion set to shrink down to the null set
(not containing any activity pattern), we need

n

(
1− 1

k

)T
≤ k − 1. With each partition, the

exclusion region shrinks.

Proposition
The minimum rate for a fixed-length collision-free feedback code must be lower
bounded as:

R∗f (n, k) ≥ log log
(

n

k − 1

)
+ log(k)− 1.
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From Fixed to Variable Length Feedback Code
Fixed-length collision-free feedback code:

Random Partition: R∗f (n, k) scales at most as k log(e) plus O(log log(n)).
Volume Bound: R∗f (n, k) scales at least as k log(e) for large n.
Exclusion Bound: R∗f (n, k) scales at least as Ω(log log(n)) for fixed k.

Thus, rate of fixed-length code scales linearly as k log(e) and as Θ (log log(n)).

Can we do better?

Variable-length collision-free feedback code:
Treat A as a random variable with distribution Q(A) and define
Rv(n, k) , H (f(A)), corresponding to optimal entropy coding.
Focusing on the worst-case activity distribution, define the optimal rate as:

R∗v(n, k) , sup
Q(·)

H (f(A)) .

It turns out we can remove even the Θ(log log(n)) growth in n.
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Greedy Encoding for k = 2

Consider the index based feedback
strategy for k = 2, but now greedily
choose the first position where user
indices differ.

If the user activity is the worst-case
uniform distribution, f (A) follows a
truncated geometric distribution.

0 1 1 0 0 0 1 0 . . .
0 1 0 1 1 1 0 1 . . .Index X:

Index Y:

A direct application of Huffman Coding results in a code of rate:

Rv(n, 2) = 2− log(n) + 1
n− 1 .

This implies lim
n→∞

R∗v(n, 2) ≤ 2, thus the achievable feedback rate remains
bounded as n tends to infinity.
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Greedy Encoding for k > 2

We again use the concept of greedy encoding strategy. Given a family of T
k-partitions B = (X̄(1), . . . , X̄(T )), define the greedy encoder fB:

fB(A) = min
t∈[T ]

t, s.t. A ∈ C
(
X̄(t)

)
, else T + 1,

and the resulting distribution pB(t) , Pr(fB(A) = t).
Denote the set of all families of k-partitions of size T as B, regardless of
whether each of them covers all activity patterns, or not.
Consider an encoder that chooses B uniformly at random from B. Define
pB(t) , EB

[
pB(t)

]
. The first T terms in this distribution are:

pB(t) = k!
kk

(
1− k!

kk

)t−1
, t = 1, . . . , T,

with the remainder of the mass at T + 1, regardless of the distribution of A.
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Variable-Length Feedback Bounds

With Jensen’s inequality, this implies the following bound independent of T :

EB
[
H
(
pB(t)

)]
≤ H (pB(t)) ≤ (k + 1) log(e).

For families of partitions of size T , let 1− ε be the fraction of collision-free
families in B, then the rate for collision-free feedback can be bounded as:

R∗v(n, k) ≤ 1
1− ε (k + 1) log(e)

Now, we can let T →∞, so ε→ 0, implying R∗v(n, k) ≤ (k + 1) log(e).
The volume bound converse can also be extended to variabe-length codes.

Theorem
The minimum rate for variable-length collision-free feedback code is bounded as

(k + 1) log(e) ≥ R∗v(n, k) ≥ k log (e) − log
(
nk

nk

)
− 1

2 log (2πk) − log (e)
12k .
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Practical Implementations

Consider a system with n = 106 potential users and k = 103 active users:
Naive scheme would require 20 kbits
Enumerative source coding requires 11.5 kbits.
Optimal feedback only needs approximately 1.5 kbits.

Some practical schemes come close to achieving the k log(e) linear scaling:

Table: Practical Hashing/Feedback Algorithms

Method Bits Per User

Random Coding 1.44
Boolean SAT 1.83

Compress-Hash-Displace 2.07
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More Slots and Multiple Users per Slot
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These bounds can be extended to the case of:
b ≥ k slots (over-provisioned system), and
b ≤ k slots for systems where the BS can decode multiple users per slot.
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Summary

What is the cost of coordinating collision-free scheduling?

Fixed-length feedback codes for collision-free scheduling of k active users
among n potential users into k slots requires a rate of approximately k log(e)
bits, plus a Θ(log log(n)) term.

Using variable-length feedback codes can reduce the required feedback rate
for collision-free scheduling to (k + 1) log(e) bits, independent of n.

If b ≥ k slots are available, or more than one user can be decoded per slot,
feedback can be further reduced.
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Random Access for Massive MIMO Systems

1 Uncoordinated Random Access for Massive MIMO
Channel estimation and data transmission must both be without coordination.
Coded ALOHA can be adapted to Massive MIMO systems to enable
uncoordinated communication.
We will consider a variant of coded ALOHA known as Coded Pilot Access.

2 Scheduled Random Access for Massive MIMO
Activity detection can serve as an initial step for scheduled random access.
A relatively small amount of feedback can be used to ensure collision-free
scheduling for the users.
Users are assigned orthogonal pilots for channel estimation.
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Slotted Random Access

The BS is equipped with M antennas.
There are n single-antenna devices k of which are active.
Active users transmit across ∆ temporal slots each containing L symbols.
The channels hd,i ∼ CN (0, 1) is i.i.d for each user i in the dth slot. We assume
users apply inverse power control to compensate for large scale fading.
The BS uses the received signal Yd over ∆ slots to decode the messages of k
active users.
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Coded Pilot Access

Users transmit their payload xi multiple times, each time preceded by a pilot
randomly selected from a set of orthogonal pilots {φt}τt=1.
In cases with no collision, the BS can perform channel estimation and data
decoding for that user.
The data contains the location of the other slots where the user has
transmitted, allowing the BS to perform SIC.

J. H. Sørensen, E. De Carvalho, Č. Stefanović, and P. Popovski, “Coded Pilot Random Access for
Massive MIMO Systems”, IEEE Trans. Wireless Commun., vol.17, no.12, pp.8035–8046, 2018.
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Scheduled Random Access for Massive MIMO

Users first transmit non-orthogonal
pilots si ∈ CL for activity detection.

BS sends scheduling message.

Each user is assigned a unique
(slot, orthogonal pilot) pair based
on common feedback from the BS.

The BS performs channel estimation using the orthogonal pilots, and then
maximum ratio combining to reconstruct the payload.

Each user is only required to transmit twice, in contrast to Coded ALOHA.
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Scheduled Random Access vs. Coded Pilot Access

Figure: Throughput of Coded Pilot Access and Scheduled Random Access with
k = 1000, n = 10000, SNR = 10dB, M = 400 BS antennas, τ = 64 orthogonal pilots

Each slot consists of L = 300 symbols.
Number of slots ∆ = 20 for coded pilot access;
Number of slots ∆ = 17 for scheduled random access.

Activity detection is done via covariance method over one slot for SRA.
Sum rate calculation assumes MRC beamforming and perfect SIC for CPA.
Sum rate gain of 50 kbits at moderate cost of 1.44 kbits of feedback.
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Conclusions

Classic random access is contention based.

Coded random access can alleviate some of the loss due to collision.

If feedback is available from BS to the users:
BS can first detect the active users using sparse recovery methods;
BS can then schedule orthogonal pilots to users for channel estimation;
Finally, the users transmit their data to the BS.

Significant performance improvement can be obtained at moderate feedback
of 1.44 bits/user for scheduling.
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Further Information

Justin Kang and Wei Yu,
“Minimum Feedback for Collision-Free Scheduling in Massive Random Access”,
Submitted to IEEE Transactions on Information Theory, 2020.
[Online] available: https://arxiv.org/abs/2007.15497.
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