



## **Minia**turization of Ultra-wideband Antennas

#### Zhi Ning Chen

Institute for Infocomm Research, Singapore

December 2008







Ο

#### Zhi Ning Chen (陈志宁) BEng, MEng, PhD & DoE

- o IEEE Fellow
- o IEEE AP-S Distinguished Lecturer
- o Principal Scientist, Institute for Infocomm Research, Singapore
- Head of RF and Optical Department, Institute for Infocomm Research, Singapore
- o Guest Professor at Shanghai Jiao Tong University, China
- o Adjunct Professors at Southeast University, Nanjing University, Zhejiang University
- o Adjunct Associate Professors at NUS, NTU, Singapore
- o Academic Visitor, IBM Watson Research Center, USA
- o Technical Advisors at Compex, Sensimesh
- o JSPS Fellow, University of Tsukuba, Japan
- o Research Fellow, City University of Hong Kong
- o Associate Professor, Southeast University
  - Associate Professor, Institute of Communications Engineering

Books: 3; Papers : >220; Patents: 19; Licensing deals: 14

International conferences:

- \*Founder of iWAT; General Chair; TPC Chairs; IAC Chair
- \*Keynotes; Invited talks; Short courses

Personal website: www1.i2r.a-star.edu.sg/~chenzn



## In this talk...

S

## Introduction

## Miniaturized Antenna Design

Conclusions



## **Introduction**

#### >UWB & Promising Applications

#### Challenges in UWB Antenna Design

#### State-of-The-Art Solutions



### Introduction: UWB & Promising Applications

#### **UWB** Radio Technology:

✓ Emission mask (3.1-10.6 GHz)

✓Low emitted power (-41.3dBm)

✓ Pulsed or Pulsed modulated

#### Promising Applications:

- ✓ Wireless connections with
  - ✓High date rate (>110Mbps)
  - ✓ Short range (<3 m)
- ✓ Consumer Electronics (WUSB & Next G Bluetooth)







# Introduction: Update of UWB Regulation

(D





### Introduction: Challenges in UWB Antenna Design

**Ultra-wide bandwidth Small size** Low cost

•Electrically small:

mm ( $\lambda$ =100mm @3 GHz)

Impedance matching: 3.1-10.6 GHz, 3.1-4.8 GHz, 6-10.6 GHz •Radiation related--Stable •Gain: Consistent at transmission/reception direction Beamwidth: Consistent •Polarization: Unchanged Phase: Linear •Physically small: Embeddable/conformal/easy integration into circuits •Functionally small: Overall size smaller than  $\lambda/4$  or 25 Diversity/band-notch/...



## s S Introduction: **State-of-The-Art Solutions 3-D**







**2-D** 







#### smaller



tiny



Planar design is very promising



### Introduction:

A

S

## State-of-The-Art Solutions: Planar Design







> LTCC 10 × 20 mm



M. Sun, et al APMC 2006

Hong, C.-Y., et al IEEE T-AP DEC 2007

IEEE Antennas & Propagation Society Distinguished Lecturer Talk



## **Miniaturized Antenna Design**





#### **Problem**

Effect of changed size/shape of "Ground plane" of planar antenna on

• Impedance response (matching/resonant frequency)





Hertel, T.W.; Cable-current effects of miniature UWB antennas, IEEE Antennas and Propagation Society International Symp**p**sium, 2005, Vol 3A, 3-8 July 2005 pp.524 - 527







The "GP" is part of the antenna (asymmetrical unbalanced fed dipole)!





#### **Existing Solutions**

- Differentiated antennas (dipole)
   But Doubled size; positioned far from ground plane (reflector)
- Modified "ground plane" (monopole)
   But ground plane large enough, just partially suppressed leakage current
- o RF cable with chock

But for testing only; absorb power although without radiation from cable





Kwon, D.-H.; Kim, Y.; "Suppression of Cable Leakage Current for Edge-Fed Printed Dipole UWB Antennas Using Leakage-**Blg**cking Slots", IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, Dec. 2006, pp.183 - 186



#### **Our solution**



Z. N. Chen; See, T.S.P.; X. Qing; Ultra-Wideband Antennas with Miniaturized Size, Reduced Ground Plane Reliance, and **14** Enhanced Diversity, iWAT 2008. International Workshop on Antenna Technology, 4-6 March 2008, pp. 24 - 27





Frequency, GHz

- Simple method Ο
- Stable impedance performance Ο
- Less degraded radiation performance Ο (radiation efficiency: 79~95%)
- GP size can be further reduced to 2 mm Ο

Zhi Ning Chen; See, T.S.P.; Terence S. P. See; Small Printed Ultrawideband Antenna With Reduced Ground Plane 15 Effect, IEEE Transactions on Antennas and Propagation, Vol.55, No. 2, Feb. 2007, pp. 383 - 388



Zhi Ning Chen; See, T.S.P.; Terence S. P. See; Small Printed Ultrawideband Antenna With Reduced Ground Plane16Effect, IEEE Transactions on Antennas and Propagation, Vol.55, No. 2, Feb. 2007, pp. 383 - 38816



#### IEEE Antennas & Propagation Society Distinguished Lecturer Talk

### Miniaturized Antenna Design -- Reduced Ground Plane Effect

S



Zhi Ning Chen; See, T.S.P.; Terence S. P. See; Small Printed Ultrawideband Antenna With Reduced Ground Plane17Effect, IEEE Transactions on Antennas and Propagation, Vol.55, No. 2, Feb. 2007, pp. 383 - 38817



#### s Miniaturized Antenna Design -- For USB Dongles

#### **Demand**

o Wireless USB dongle

#### **Problem**

- Narrow with a width of ~11-24 mm
- o Significant effect of ground plane length/shape







Reference antenna (without the stub lines) Proposed antenna (with the stub lines)

## Miniaturized Antenna Design -- For USB Dongles

#### **Solutions**



Jinwoo Jung, Hyeonjin Lee, Yeongseog Lim, "Band notched ultra wideband internal antenna for USB dongle application", Microwave and Optical Technology Letters, Vol. 50, No 7, July 2008, pp.1789-1793

Chen, Z.N.; See, T.S.P.; Reduced Ground-Plane Effect UWB Antenna and Application for Laptop Computers (Invited), TENCON 2006. 2006 IEEE Region 10 Conference, 14-17 Nov. 2006 Page(s):1 - 4



# Miniaturized Antenna Design -- For USB Dongles



Zhi Ning Chen; UWB antennas with enhanced performances (invited), International Conference on Microwave and Millimeter Wave Technology, 2008. ICMMT 2008. Vol.1, 21-24 April 2008 pp.387 - 390



# Miniaturized Antenna Design -- Diversity Performance

#### **Demand**

 Reliability and robustness of UWB system in dense indoor environments

#### **Problem**

 Very limited space for two or more antennas with high enough isolation

### **Solution**

- o Polarization
- o Pattern
- o But space



 $\theta = 0^{\circ}$  (z-axis)

= 315

 $\phi = 90^{\circ}$ 

#### S Miniaturized Antenna Design -- Diversity Performance

A



K.-L. Wong, S.-W. Su, Y.-L. Kuo, "A printed ultra-wideband diversity monopole antenna", Microwave and Optical Technology Letters, Vol. 38, No. 4, 20 August 2003, pp. 257-259

8000

IEEE Antennas & Propagation Society Distinguished Lecturer Talk



## s S Miniaturized Antenna Design -- Diversity Performance





Zhi Ning Chen; UWB antennas with enhanced performances (invited), International Conference on Microwave and Millimeter Wave Technology, 2008. ICMMT 2008. Vol.1, 21-24 April 2008 pp.387 - 390

23





# Miniaturized Antenna Design -- Filtering Antenna

#### **Problem**

N

- Possible out-of-band interference between UWB devices with other electric devices
- o Additional filters with increased size of devices
- o Embedded filter into radiator with low Q



#### Worldwide Regulatory Status



# Miniaturized Antenna Design -- Filtering Antenna

#### **Solutions**

oAdditional bandpass filter before antenna: large size

oCo-design of filter and antenna with a common ground plane : compact but challenging (low & high Q)





# Miniaturized Antenna Design -- Filtering Antenna

#### **Solutions**

oAdditional bandpass filter before antenna: large size

oCo-design of filter and antenna with a common ground plane : compact but challenging (low & high Q)





@3 GHz



#### IEEE Antennas & Propagation Society Distinguished Lecturer Talk

# Miniaturized Antenna Design -- Band-notched

#### **Demand**

0

 Possible interference between UWB devices with other electric devices in 5 GHz-band (4.9-5.875 GHz)

#### **Problem**

• Additional filters increase size of devices





# Miniaturized Antenna Design Band-notched

#### **Solutions**

- o Extra band-stop filter (before UWB antenna): bulky size
- Integrated filter into ground plane (in antenna): strong coupling
- Embedded filter into upper radiator: *low Q & bandwidth & rejection*





S. W. Su, K. L. Wong, and F.S. Chang, "Compact printed ultra-wideband slot antenna with a band-notched operation", Microwave and Optical Technology Letters, Vol. 45, No. 2, 20 April 2005, pp.128-130

A. A. Eldek, "A small ultra-wideband planar tap monopole antenna with slit, tapered transition, and notched ground plane", **29** Microwave and Optical Technology Letters, Vol. 48, No. 8, August 2006, pp. 1650-1654



•Saou-Wen Su, Kin-Lu Wong, Fa-Shian Chang, "Compact printed ultra-wideband slot antenna with a band-notched operation", Microwave and Optical Technology Letters, Vol. 45, No. 2, 20 April 2005, pp.128-130

•R. Gayathri, T.U. Jisney, D.D. Krishna, M. Gopikrishna and C.K. Aanandan, Band-notched inverted-cone monopole antennation compact UWB systems, ELECTRONICS LETTERS 25th September 2008 Vol. 44 No. 20



•T.-G. Ma, R.-C. Hua, and C.-F. Chou, "Design of a Multiresonator Loaded Band-Rejected Ultrawideband Planar Monopole Antenna With Controllable Notched Bandwidth", IEEE Trans antennas Propagat., Vol. 56, No. 9, Sept 2008, pp.2875-2883

•Y. Zhang; W. Hong; C. Yu; Z. Kuai; Y. Don; Planar ultrawideband antennas with multiple notched bands based on etched sb1s on the patch and/or split ring resonators on the feed line, IEEE Trans Antennas Propagat., Vol56, No9, Sept. 2008 pp.3063 - 3068



### Miniaturized Antenna Design -- Stable Radiation

#### **Problem**

- Gain along T/R direction of interest changes across wide operation bandwidth (for P2P or P2MP)
  - o Distorted waveform of pulses
  - o Degraded receiver performance

#### **Solutions**

 Combining different modes to compensate for the variation of the currents on antenna





## Miniaturized Antenna Design -- Stable Radiation



0

X. N. Low and Z. N. Chen, "A compact planar dipole antenna with ultra-wideband performance," IEEE AP-S International **33** Symposium on Antennas & Propagat., July 5-11, 2008 San Diego, USA



## Miniaturized Antenna Design -- Tiny Design

#### **Problem**

- o Integration of antenna into *very small* devices such as sensors
- o Integration of antenna into package

#### **Solutions**

- o Trade-off between performance and size
- Using LTCC



#### IEEE Antennas & Propagation Society Distinguished Lecturer Talk

## s s Miniaturized Antenna Design -- Tiny Design



Ferro ceramic type with a dielectric constant of 5.9 and a loss tangent <0.002 below 10 GHz.

Sun Mei; Zhang Yue Ping; A Chip Antenna in LTCC for UWB Radios, IEEE Transactions on Antennas and Propagation, Vola 56, No. 4, April 2008, pp.1177 - 1180



## Conclusions

>All designs are strongly driven by applications with specific requirements.

>Desired UWB antennas for portable devices:

- ✓ Small/tiny size: limited to area of ~12×12mm
- ✓ Reduced "groundplane" effect: still challenging
- ✓ **Diversity performance:** *more work*
- Filtering performance to suppress out-of-band interference: just started

✓ Band-notch performance: Shape rejection with enough bandwidth and/or multiple bands

IEEE Antennas & Propagation Society Distinguished Lecturer Talk





#### 2009 IEEE International Workshop on Antenna Technology: *iWAT2009 : "Small Antennas and Novel Metamaterials*" March 2–4, 2009, Santa Monica, California



#### http://www.i2r.a-star.edu.sg/iwat/





## **THANK YOU !**

#### Any questions or feedback, please contact me at

chenzn@i2r.a-star.edu.sg

www.i2r.a-star.edu.sg/~chenzn

Many thanks for all contributors to the work in this talk!